EOS/flask_server.py

220 lines
8.4 KiB
Python
Raw Normal View History

2024-03-28 08:15:17 +01:00
from flask import Flask, jsonify, request
import numpy as np
from datetime import datetime
from modules.class_load import *
from modules.class_ems import *
from modules.class_pv_forecast import *
from modules.class_akku import *
from modules.class_strompreis import *
from modules.class_heatpump import *
from modules.class_load_container import *
from modules.class_eauto import *
from pprint import pprint
import matplotlib.pyplot as plt
from modules.visualize import *
from deap import base, creator, tools, algorithms
import numpy as np
import random
import os
start_hour = datetime.now().hour
prediction_hours = 24
hohe_strafe = 10.0
def evaluate_inner(individual, ems):
discharge_hours_bin = individual[0::2]
eautocharge_hours_float = individual[1::2]
#print(discharge_hours_bin)
#print(len(eautocharge_hours_float))
ems.reset()
ems.set_akku_discharge_hours(discharge_hours_bin)
ems.set_eauto_charge_hours(eautocharge_hours_float)
o = ems.simuliere(start_hour)
return o
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
def evaluate(individual,ems,parameter):
o = evaluate_inner(individual,ems)
gesamtbilanz = o["Gesamtbilanz_Euro"]
# Überprüfung, ob der Mindest-SoC erreicht wird
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
strafe = 0.0
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * hohe_strafe )
# print(ems.eauto.charge_array)
# print(ems.eauto.ladezustand_in_prozent())
# print(strafe)
gesamtbilanz += strafe
gesamtbilanz += o["Gesamt_Verluste"]/1000.0
return (gesamtbilanz,)
# Werkzeug-Setup
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_bool,toolbox.attr_bool), n=prediction_hours)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
toolbox.register("select", tools.selTournament, tournsize=3)
# Genetischer Algorithmus
def optimize():
population = toolbox.population(n=500)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)
algorithms.eaMuPlusLambda(population, toolbox, 50, 100, cxpb=0.5, mutpb=0.5, ngen=500, stats=stats, halloffame=hof, verbose=True)
#algorithms.eaSimple(population, toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
return hof[0]
app = Flask(__name__)
# Dummy-Funktion für die Durchführung der Simulation/Optimierung
# Ersetzen Sie diese Logik durch Ihren eigentlichen Optimierungscode
def durchfuehre_simulation(parameter):
############
# Parameter
############
date = (datetime.now().date() + timedelta(hours = prediction_hours)).strftime("%Y-%m-%d")
date_now = datetime.now().strftime("%Y-%m-%d")
akku_size = parameter['pv_akku_cap'] # Wh
year_energy = parameter['year_energy'] #2000*1000 #Wh
einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
max_heizleistung = parameter['max_heizleistung'] #1000 # 5 kW Heizleistung
wp = Waermepumpe(max_heizleistung,prediction_hours)
pv_forecast_url = parameter['pv_forecast_url'] #"https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m"
akku = PVAkku(kapazitaet_wh=akku_size,hours=prediction_hours,start_soc_prozent=parameter["pv_soc"])
discharge_array = np.full(prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
laden_moeglich = np.full(prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
eauto.set_charge_per_hour(laden_moeglich)
min_soc_eauto = parameter['eauto_min_soc']
gesamtlast = Gesamtlast()
###############
# Load Forecast
###############
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
###############
# PV Forecast
###############
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
PVforecast = PVForecast(prediction_hours = prediction_hours, url=pv_forecast_url)
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
###############
# Strompreise
###############
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
#price_forecast = HourlyElectricityPriceForecast(source=filepath)
price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.net/prices?start="+date_now+"&end="+date+"")
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
###############
# WP
##############
leistung_wp = wp.simulate_24h(temperature_forecast)
gesamtlast.hinzufuegen("Heatpump", leistung_wp)
ems = EnergieManagementSystem(akku=akku, gesamtlast = gesamtlast, pv_prognose_wh=pv_forecast, strompreis_cent_pro_wh=specific_date_prices, einspeiseverguetung_cent_pro_wh=einspeiseverguetung_cent_pro_wh, eauto=eauto)
o = ems.simuliere(start_hour)
def evaluate_wrapper(individual):
return evaluate(individual, ems, parameter)
toolbox.register("evaluate", evaluate_wrapper)
start_solution = optimize()
best_solution = start_solution
o = evaluate_inner(best_solution, ems)
eauto = ems.eauto.to_dict()
discharge_hours_bin = best_solution[0::2]
eautocharge_hours_float = best_solution[1::2]
#print(o)
#visualisiere_ergebnisse(gesamtlast, pv_forecast, specific_date_prices, o,best_solution[0::2],best_solution[1::2] , temperature_forecast, start_hour, prediction_hours)
#print(eauto)
return {"discharge_hours_bin":discharge_hours_bin, "eautocharge_hours_float":eautocharge_hours_float ,"result":o ,"eauto_obj":eauto}
@app.route('/simulation', methods=['POST'])
def simulation():
if request.method == 'POST':
parameter = request.json
# Erforderliche Parameter prüfen
erforderliche_parameter = [ 'pv_akku_cap', 'year_energy',"einspeiseverguetung_euro_pro_wh", 'max_heizleistung', 'pv_forecast_url', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc"]
for p in erforderliche_parameter:
if p not in parameter:
return jsonify({"error": f"Fehlender Parameter: {p}"}), 400
# Optional Typen der Parameter prüfen und sicherstellen, dass sie den Erwartungen entsprechen
# if not isinstance(parameter['start_hour'], int):
# return jsonify({"error": "start_hour muss vom Typ int sein"}), 400
# Simulation durchführen
ergebnis = durchfuehre_simulation(parameter)
return jsonify(ergebnis)
if __name__ == '__main__':
app.run(debug=True, host="0.0.0.0")