Files
EOS/src/akkudoktoreos/server/dash/demo.py

268 lines
7.9 KiB
Python
Raw Normal View History

import json
from pathlib import Path
from typing import Union
import pandas as pd
import requests
from bokeh.models import ColumnDataSource, LinearAxis, Range1d
from bokeh.plotting import figure
from monsterui.franken import FT, Grid, P
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticDateTimeDataFrame
from akkudoktoreos.server.dash.bokeh import Bokeh
DIR_DEMODATA = Path(__file__).absolute().parent.joinpath("data")
FILE_DEMOCONFIG = DIR_DEMODATA.joinpath("democonfig.json")
if not FILE_DEMOCONFIG.exists():
raise ValueError(f"File does not exist: {FILE_DEMOCONFIG}")
logger = get_logger(__name__)
# bar width for 1 hour bars (time given in millseconds)
BAR_WIDTH_1HOUR = 1000 * 60 * 60
def DemoPVForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["pvforecast"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"PV Power Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Power [W]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="pvforecast_ac_power",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="AC Power",
color="lightblue",
)
return Bokeh(plot)
def DemoElectricityPriceForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["elecprice"]["provider"]
plot = figure(
x_axis_type="datetime",
y_range=Range1d(
predictions["elecprice_marketprice_kwh"].min() - 0.1,
predictions["elecprice_marketprice_kwh"].max() + 0.1,
),
title=f"Electricity Price Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Price [€/kWh]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="elecprice_marketprice_kwh",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="Market Price",
color="lightblue",
)
return Bokeh(plot)
def DemoWeatherTempAir(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
y_range=Range1d(
predictions["weather_temp_air"].min() - 1.0, predictions["weather_temp_air"].max() + 1.0
),
title=f"Air Temperature Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Temperature [°C]",
sizing_mode="stretch_width",
height=400,
)
plot.line(
"date_time", "weather_temp_air", source=source, legend_label="Air Temperature", color="blue"
)
return Bokeh(plot)
def DemoWeatherIrradiance(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"Irradiance Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Irradiance [W/m2]",
sizing_mode="stretch_width",
height=400,
)
plot.line(
"date_time",
"weather_ghi",
source=source,
legend_label="Global Horizontal Irradiance",
color="red",
)
plot.line(
"date_time",
"weather_dni",
source=source,
legend_label="Direct Normal Irradiance",
color="green",
)
plot.line(
"date_time",
"weather_dhi",
source=source,
legend_label="Diffuse Horizontal Irradiance",
color="blue",
)
return Bokeh(plot)
def DemoLoad(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["load"]["provider"]
if provider == "LoadAkkudoktor":
year_energy = config["load"]["provider_settings"]["loadakkudoktor_year_energy"]
provider = f"{provider}, {year_energy} kWh"
plot = figure(
x_axis_type="datetime",
title=f"Load Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Load [W]",
sizing_mode="stretch_width",
height=400,
)
plot.extra_y_ranges["stddev"] = Range1d(0, 1000)
y2_axis = LinearAxis(y_range_name="stddev", axis_label="Load Standard Deviation [W]")
y2_axis.axis_label_text_color = "green"
plot.add_layout(y2_axis, "left")
plot.line(
"date_time",
"load_mean",
source=source,
legend_label="Load mean value",
color="red",
)
plot.line(
"date_time",
"load_mean_adjusted",
source=source,
legend_label="Load adjusted by measurement",
color="blue",
)
plot.line(
"date_time",
"load_std",
source=source,
legend_label="Load standard deviation",
color="green",
y_range_name="stddev",
)
return Bokeh(plot)
def Demo(eos_host: str, eos_port: Union[str, int]) -> str:
server = f"http://{eos_host}:{eos_port}"
# Get current configuration from server
try:
result = requests.get(f"{server}/v1/config", timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve configuration from {server}: {err}, {detail}",
cls="text-center",
)
config = result.json()
# Set demo configuration
with FILE_DEMOCONFIG.open("r", encoding="utf-8") as fd:
democonfig = json.load(fd)
try:
result = requests.put(f"{server}/v1/config", json=democonfig, timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return P(
f"Can not set demo configuration on {server}: {err}, {detail}",
cls="text-center",
)
# Update all predictions
try:
result = requests.post(f"{server}/v1/prediction/update", timeout=10)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return P(
f"Can not update predictions on {server}: {err}, {detail}",
cls="text-center",
)
# Get Forecasts
try:
params = {
"keys": [
"pvforecast_ac_power",
"elecprice_marketprice_kwh",
"weather_temp_air",
"weather_ghi",
"weather_dni",
"weather_dhi",
"load_mean",
"load_std",
"load_mean_adjusted",
],
}
result = requests.get(f"{server}/v1/prediction/dataframe", params=params, timeout=10)
result.raise_for_status()
predictions = PydanticDateTimeDataFrame(**result.json()).to_dataframe()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve predictions from {server}: {err}, {detail}",
cls="text-center",
)
except Exception as err:
return P(
f"Can not retrieve predictions from {server}: {err}",
cls="text-center",
)
# Reset to original config
requests.put(f"{server}/v1/config", json=config, timeout=10)
return Grid(
DemoPVForecast(predictions, democonfig),
DemoElectricityPriceForecast(predictions, democonfig),
DemoWeatherTempAir(predictions, democonfig),
DemoWeatherIrradiance(predictions, democonfig),
DemoLoad(predictions, democonfig),
cols_max=2,
)