EOS/src/akkudoktoreos/server/fastapi_server.py

250 lines
8.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import os
from datetime import datetime
from pathlib import Path
2024-12-11 10:23:08 +01:00
from typing import Annotated, Any, Dict, List, Optional
import matplotlib
import uvicorn
from fastapi.exceptions import HTTPException
2024-12-11 10:23:08 +01:00
from pydantic import BaseModel
# Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
matplotlib.use("Agg")
import pandas as pd
2024-12-11 10:23:08 +01:00
from fastapi import FastAPI, Query
from fastapi.responses import FileResponse, RedirectResponse
from akkudoktoreos.config import (
SetupIncomplete,
get_start_enddate,
get_working_dir,
load_config,
)
from akkudoktoreos.optimization.genetic import (
OptimizationParameters,
OptimizeResponse,
optimization_problem,
)
from akkudoktoreos.prediction.load_container import Gesamtlast
from akkudoktoreos.prediction.load_corrector import LoadPredictionAdjuster
from akkudoktoreos.prediction.load_forecast import LoadForecast
from akkudoktoreos.prediction.price_forecast import HourlyElectricityPriceForecast
from akkudoktoreos.prediction.pv_forecast import ForecastResponse, PVForecast
app = FastAPI(
title="Akkudoktor-EOS",
description="This project provides a comprehensive solution for simulating and optimizing an energy system based on renewable energy sources. With a focus on photovoltaic (PV) systems, battery storage (batteries), load management (consumer requirements), heat pumps, electric vehicles, and consideration of electricity price data, this system enables forecasting and optimization of energy flow and costs over a specified period.",
summary="Comprehensive solution for simulating and optimizing an energy system based on renewable energy sources",
version="0.0.1",
license_info={
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0.html",
},
)
working_dir = get_working_dir()
# copy config to working directory. Make this a CLI option later
config = load_config(working_dir, True)
opt_class = optimization_problem(config)
server_dir = Path(__file__).parent.resolve()
class PdfResponse(FileResponse):
media_type = "application/pdf"
@app.get("/strompreis")
def fastapi_strompreis() -> list[float]:
# Get the current date and the end date based on prediction hours
date_now, date = get_start_enddate(config.eos.prediction_hours, startdate=datetime.now().date())
price_forecast = HourlyElectricityPriceForecast(
source=f"https://api.akkudoktor.net/prices?start={date_now}&end={date}",
config=config,
use_cache=False,
)
specific_date_prices = price_forecast.get_price_for_daterange(
date_now, date
) # Fetch prices for the specified date range
return specific_date_prices.tolist()
2024-12-11 10:23:08 +01:00
class GesamtlastRequest(BaseModel):
year_energy: float
measured_data: List[Dict[str, Any]]
hours: int
@app.post("/gesamtlast")
2024-12-11 10:23:08 +01:00
def fastapi_gesamtlast(request: GesamtlastRequest) -> list[float]:
"""Endpoint to handle total load calculation based on the latest measured data."""
2024-12-11 10:23:08 +01:00
# Request-Daten extrahieren
year_energy = request.year_energy
measured_data = request.measured_data
hours = request.hours
# Ab hier bleibt der Code unverändert ...
measured_data_df = pd.DataFrame(measured_data)
measured_data_df["time"] = pd.to_datetime(measured_data_df["time"])
2024-12-11 10:23:08 +01:00
# Zeitzonenmanagement
if measured_data_df["time"].dt.tz is None:
measured_data_df["time"] = measured_data_df["time"].dt.tz_localize("Europe/Berlin")
else:
measured_data_df["time"] = measured_data_df["time"].dt.tz_convert("Europe/Berlin")
2024-12-11 10:23:08 +01:00
# Zeitzone entfernen
measured_data_df["time"] = measured_data_df["time"].dt.tz_localize(None)
2024-12-11 10:23:08 +01:00
# Forecast erstellen
lf = LoadForecast(
filepath=server_dir / ".." / "data" / "load_profiles.npz", year_energy=year_energy
)
forecast_list = []
for single_date in pd.date_range(
measured_data_df["time"].min().date(), measured_data_df["time"].max().date()
):
date_str = single_date.strftime("%Y-%m-%d")
daily_forecast = lf.get_daily_stats(date_str)
mean_values = daily_forecast[0]
fc_hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
daily_forecast_df = pd.DataFrame({"time": fc_hours, "Last Pred": mean_values})
forecast_list.append(daily_forecast_df)
predicted_data = pd.concat(forecast_list, ignore_index=True)
adjuster = LoadPredictionAdjuster(measured_data_df, predicted_data, lf)
2024-12-11 10:23:08 +01:00
adjuster.calculate_weighted_mean()
adjuster.adjust_predictions()
future_predictions = adjuster.predict_next_hours(hours)
2024-12-11 10:26:20 +01:00
leistung_haushalt = future_predictions["Adjusted Pred"].to_numpy()
gesamtlast = Gesamtlast(prediction_hours=hours)
gesamtlast.hinzufuegen(
"Haushalt",
2024-12-11 10:23:08 +01:00
leistung_haushalt,
)
2024-12-11 10:23:08 +01:00
last = gesamtlast.gesamtlast_berechnen()
return last.tolist()
@app.get("/gesamtlast_simple")
def fastapi_gesamtlast_simple(year_energy: float) -> list[float]:
date_now, date = get_start_enddate(
config.eos.prediction_hours, startdate=datetime.now().date()
) # Get the current date and prediction end date
###############
# Load Forecast
###############
lf = LoadForecast(
filepath=server_dir / ".." / "data" / "load_profiles.npz", year_energy=year_energy
) # Instantiate LoadForecast with specified parameters
leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[
0
] # Get expected household load for the date range
gesamtlast = Gesamtlast(
prediction_hours=config.eos.prediction_hours
) # Create Gesamtlast instance
gesamtlast.hinzufuegen(
"Haushalt", leistung_haushalt
) # Add household load to total load calculation
# ###############
# # WP (Heat Pump)
# ##############
# leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
# gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
last = gesamtlast.gesamtlast_berechnen() # Calculate total load
return last.tolist() # Return total load as JSON
@app.get("/pvforecast")
def fastapi_pvprognose(url: str, ac_power_measurement: Optional[float] = None) -> ForecastResponse:
date_now, date = get_start_enddate(config.eos.prediction_hours, startdate=datetime.now().date())
###############
# PV Forecast
###############
PVforecast = PVForecast(
prediction_hours=config.eos.prediction_hours, url=url
) # Instantiate PVForecast with given parameters
if ac_power_measurement is not None:
PVforecast.update_ac_power_measurement(
date_time=datetime.now(),
ac_power_measurement=ac_power_measurement,
) # Update measurement
# Get PV forecast and temperature forecast for the specified date range
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now, date)
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now, date)
return ForecastResponse(temperature=temperature_forecast.tolist(), pvpower=pv_forecast.tolist())
@app.post("/optimize")
def fastapi_optimize(
parameters: OptimizationParameters,
start_hour: Annotated[
Optional[int], Query(description="Defaults to current hour of the day.")
] = None,
) -> OptimizeResponse:
if start_hour is None:
start_hour = datetime.now().hour
# Perform optimization simulation
result = opt_class.optimierung_ems(parameters=parameters, start_hour=start_hour)
# print(result)
return result
@app.get("/visualization_results.pdf", response_class=PdfResponse)
def get_pdf() -> PdfResponse:
# Endpoint to serve the generated PDF with visualization results
output_path = config.working_dir / config.directories.output
if not output_path.is_dir():
raise SetupIncomplete(f"Output path does not exist: {output_path}.")
file_path = output_path / "visualization_results.pdf"
if not file_path.is_file():
raise HTTPException(status_code=404, detail="No visualization result available.")
return PdfResponse(file_path)
@app.get("/site-map", include_in_schema=False)
def site_map() -> RedirectResponse:
return RedirectResponse(url="/docs")
@app.get("/", include_in_schema=False)
def root() -> RedirectResponse:
# Redirect the root URL to the site map
return RedirectResponse(url="/docs")
if __name__ == "__main__":
try:
config.run_setup()
except Exception as e:
print(f"Failed to initialize: {e}")
exit(1)
# Set host and port from environment variables or defaults
host = os.getenv("EOS_RUN_HOST", "0.0.0.0")
port = os.getenv("EOS_RUN_PORT", 8503)
try:
uvicorn.run(app, host=host, port=int(port)) # Run the FastAPI application
except Exception as e:
print(
f"Could not bind to host {host}:{port}. Error: {e}"
) # Error handling for binding issues
exit(1)
else:
# started from cli / dev server
config.run_setup()