Files
EOS/docs/_generated/config.md

1996 lines
67 KiB
Markdown
Raw Normal View History

# Configuration Table
## Settings for common configuration
General configuration to set directories of cache and output files and system location (latitude
and longitude).
Validators ensure each parameter is within a specified range. A computed property, `timezone`,
determines the time zone based on latitude and longitude.
Attributes:
latitude (Optional[float]): Latitude in degrees, must be between -90 and 90.
longitude (Optional[float]): Longitude in degrees, must be between -180 and 180.
Properties:
timezone (Optional[str]): Computed time zone string based on the specified latitude
and longitude.
:::{table} general
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| version | `EOS_GENERAL__VERSION` | `str` | `rw` | `0.1.0+dev` | Configuration file version. Used to check compatibility. |
| data_folder_path | `EOS_GENERAL__DATA_FOLDER_PATH` | `Optional[pathlib.Path]` | `rw` | `None` | Path to EOS data directory. |
| data_output_subpath | `EOS_GENERAL__DATA_OUTPUT_SUBPATH` | `Optional[pathlib.Path]` | `rw` | `output` | Sub-path for the EOS output data directory. |
| latitude | `EOS_GENERAL__LATITUDE` | `Optional[float]` | `rw` | `52.52` | Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°) |
| longitude | `EOS_GENERAL__LONGITUDE` | `Optional[float]` | `rw` | `13.405` | Longitude in decimal degrees, within -180 to 180 (°) |
| timezone | | `Optional[str]` | `ro` | `N/A` | Compute timezone based on latitude and longitude. |
| data_output_path | | `Optional[pathlib.Path]` | `ro` | `N/A` | Compute data_output_path based on data_folder_path. |
| config_folder_path | | `Optional[pathlib.Path]` | `ro` | `N/A` | Path to EOS configuration directory. |
| config_file_path | | `Optional[pathlib.Path]` | `ro` | `N/A` | Path to EOS configuration file. |
:::
### Example Input
```{eval-rst}
.. code-block:: json
{
"general": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"version": "0.1.0+dev",
"data_folder_path": null,
"data_output_subpath": "output",
"latitude": 52.52,
"longitude": 13.405
}
}
```
### Example Output
```{eval-rst}
.. code-block:: json
{
"general": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"version": "0.1.0+dev",
"data_folder_path": null,
"data_output_subpath": "output",
"latitude": 52.52,
"longitude": 13.405,
"timezone": "Europe/Berlin",
"data_output_path": null,
"config_folder_path": "/home/user/.config/net.akkudoktoreos.net",
"config_file_path": "/home/user/.config/net.akkudoktoreos.net/EOS.config.json"
}
}
```
Improve caching. (#431) * Move the caching module to core. Add an in memory cache that for caching function and method results during an energy management run (optimization run). Two decorators are provided for methods and functions. * Improve the file cache store by load and save functions. Make EOS load the cache file store on startup and save it on shutdown. Add a cyclic task that cleans the cache file store from outdated cache files. * Improve startup of EOSdash by EOS Make EOS starting EOSdash adhere to path configuration given in EOS. The whole environment from EOS is now passed to EOSdash. Should also prevent test errors due to unwanted/ wrong config file creation. Both servers now provide a health endpoint that can be used to detect whether the server is running. This is also used for testing now. * Improve startup of EOS EOS now has got an energy management task that runs shortly after startup. It tries to execute energy management runs with predictions newly fetched or initialized from cached data on first run. * Improve shutdown of EOS EOS has now a shutdown task that shuts EOS down gracefully with some time delay to allow REST API requests for shutdwon or restart to be fully serviced. * Improve EMS Add energy management task for repeated energy management controlled by startup delay and interval configuration parameters. Translate EnergieManagementSystem to english EnergyManagement. * Add administration endpoints - endpoints to control caching from REST API. - endpoints to control server restart (will not work on Windows) and shutdown from REST API * Improve doc generation Use "\n" linenend convention also on Windows when generating doc files. Replace Windows specific 127.0.0.1 address by standard 0.0.0.0. * Improve test support (to be able to test caching) - Add system test option to pytest for running tests with "real" resources - Add new test fixture to start server for test class and test function - Make kill signal adapt to Windows/ Linux - Use consistently "\n" for lineends when writing text files in doc test - Fix test_logging under Windows - Fix conftest config_default_dirs test fixture under Windows From @Lasall * Improve Windows support - Use 127.0.0.1 as default config host (model defaults) and addionally redirect 0.0.0.0 to localhost on Windows (because default config file still has 0.0.0.0). - Update install/startup instructions as package installation is required atm. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-02-12 21:35:51 +01:00
## Cache Configuration
:::{table} cache
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| subpath | `EOS_CACHE__SUBPATH` | `Optional[pathlib.Path]` | `rw` | `cache` | Sub-path for the EOS cache data directory. |
| cleanup_interval | `EOS_CACHE__CLEANUP_INTERVAL` | `float` | `rw` | `300` | Intervall in seconds for EOS file cache cleanup. |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"cache": {
"subpath": "cache",
"cleanup_interval": 300.0
}
}
```
## Energy Management Configuration
:::{table} ems
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| startup_delay | `EOS_EMS__STARTUP_DELAY` | `float` | `rw` | `5` | Startup delay in seconds for EOS energy management runs. |
| interval | `EOS_EMS__INTERVAL` | `Optional[float]` | `rw` | `None` | Intervall in seconds between EOS energy management runs. |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| mode | `EOS_EMS__MODE` | `Optional[akkudoktoreos.core.emsettings.EnergyManagementMode]` | `rw` | `None` | Energy management mode [OPTIMIZATION | PREDICTION]. |
Improve caching. (#431) * Move the caching module to core. Add an in memory cache that for caching function and method results during an energy management run (optimization run). Two decorators are provided for methods and functions. * Improve the file cache store by load and save functions. Make EOS load the cache file store on startup and save it on shutdown. Add a cyclic task that cleans the cache file store from outdated cache files. * Improve startup of EOSdash by EOS Make EOS starting EOSdash adhere to path configuration given in EOS. The whole environment from EOS is now passed to EOSdash. Should also prevent test errors due to unwanted/ wrong config file creation. Both servers now provide a health endpoint that can be used to detect whether the server is running. This is also used for testing now. * Improve startup of EOS EOS now has got an energy management task that runs shortly after startup. It tries to execute energy management runs with predictions newly fetched or initialized from cached data on first run. * Improve shutdown of EOS EOS has now a shutdown task that shuts EOS down gracefully with some time delay to allow REST API requests for shutdwon or restart to be fully serviced. * Improve EMS Add energy management task for repeated energy management controlled by startup delay and interval configuration parameters. Translate EnergieManagementSystem to english EnergyManagement. * Add administration endpoints - endpoints to control caching from REST API. - endpoints to control server restart (will not work on Windows) and shutdown from REST API * Improve doc generation Use "\n" linenend convention also on Windows when generating doc files. Replace Windows specific 127.0.0.1 address by standard 0.0.0.0. * Improve test support (to be able to test caching) - Add system test option to pytest for running tests with "real" resources - Add new test fixture to start server for test class and test function - Make kill signal adapt to Windows/ Linux - Use consistently "\n" for lineends when writing text files in doc test - Fix test_logging under Windows - Fix conftest config_default_dirs test fixture under Windows From @Lasall * Improve Windows support - Use 127.0.0.1 as default config host (model defaults) and addionally redirect 0.0.0.0 to localhost on Windows (because default config file still has 0.0.0.0). - Update install/startup instructions as package installation is required atm. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-02-12 21:35:51 +01:00
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"ems": {
"startup_delay": 5.0,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"interval": 300.0,
"mode": "OPTIMIZATION"
Improve caching. (#431) * Move the caching module to core. Add an in memory cache that for caching function and method results during an energy management run (optimization run). Two decorators are provided for methods and functions. * Improve the file cache store by load and save functions. Make EOS load the cache file store on startup and save it on shutdown. Add a cyclic task that cleans the cache file store from outdated cache files. * Improve startup of EOSdash by EOS Make EOS starting EOSdash adhere to path configuration given in EOS. The whole environment from EOS is now passed to EOSdash. Should also prevent test errors due to unwanted/ wrong config file creation. Both servers now provide a health endpoint that can be used to detect whether the server is running. This is also used for testing now. * Improve startup of EOS EOS now has got an energy management task that runs shortly after startup. It tries to execute energy management runs with predictions newly fetched or initialized from cached data on first run. * Improve shutdown of EOS EOS has now a shutdown task that shuts EOS down gracefully with some time delay to allow REST API requests for shutdwon or restart to be fully serviced. * Improve EMS Add energy management task for repeated energy management controlled by startup delay and interval configuration parameters. Translate EnergieManagementSystem to english EnergyManagement. * Add administration endpoints - endpoints to control caching from REST API. - endpoints to control server restart (will not work on Windows) and shutdown from REST API * Improve doc generation Use "\n" linenend convention also on Windows when generating doc files. Replace Windows specific 127.0.0.1 address by standard 0.0.0.0. * Improve test support (to be able to test caching) - Add system test option to pytest for running tests with "real" resources - Add new test fixture to start server for test class and test function - Make kill signal adapt to Windows/ Linux - Use consistently "\n" for lineends when writing text files in doc test - Fix test_logging under Windows - Fix conftest config_default_dirs test fixture under Windows From @Lasall * Improve Windows support - Use 127.0.0.1 as default config host (model defaults) and addionally redirect 0.0.0.0 to localhost on Windows (because default config file still has 0.0.0.0). - Update install/startup instructions as package installation is required atm. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-02-12 21:35:51 +01:00
}
}
```
## Logging Configuration
:::{table} logging
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| console_level | `EOS_LOGGING__CONSOLE_LEVEL` | `Optional[str]` | `rw` | `None` | Logging level when logging to console. |
| file_level | `EOS_LOGGING__FILE_LEVEL` | `Optional[str]` | `rw` | `None` | Logging level when logging to file. |
| file_path | | `Optional[pathlib.Path]` | `ro` | `N/A` | Computed log file path based on data output path. |
:::
### Example Input
```{eval-rst}
.. code-block:: json
{
"logging": {
"console_level": "TRACE",
"file_level": "TRACE"
}
}
```
### Example Output
```{eval-rst}
.. code-block:: json
{
"logging": {
"console_level": "TRACE",
"file_level": "TRACE",
"file_path": "/home/user/.local/share/net.akkudoktoreos.net/output/eos.log"
}
}
```
## Base configuration for devices simulation settings
:::{table} devices
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| batteries | `EOS_DEVICES__BATTERIES` | `Optional[list[akkudoktoreos.devices.devices.BatteriesCommonSettings]]` | `rw` | `None` | List of battery devices |
| max_batteries | `EOS_DEVICES__MAX_BATTERIES` | `Optional[int]` | `rw` | `None` | Maximum number of batteries that can be set |
| electric_vehicles | `EOS_DEVICES__ELECTRIC_VEHICLES` | `Optional[list[akkudoktoreos.devices.devices.BatteriesCommonSettings]]` | `rw` | `None` | List of electric vehicle devices |
| max_electric_vehicles | `EOS_DEVICES__MAX_ELECTRIC_VEHICLES` | `Optional[int]` | `rw` | `None` | Maximum number of electric vehicles that can be set |
| inverters | `EOS_DEVICES__INVERTERS` | `Optional[list[akkudoktoreos.devices.devices.InverterCommonSettings]]` | `rw` | `None` | List of inverters |
| max_inverters | `EOS_DEVICES__MAX_INVERTERS` | `Optional[int]` | `rw` | `None` | Maximum number of inverters that can be set |
| home_appliances | `EOS_DEVICES__HOME_APPLIANCES` | `Optional[list[akkudoktoreos.devices.devices.HomeApplianceCommonSettings]]` | `rw` | `None` | List of home appliances |
| max_home_appliances | `EOS_DEVICES__MAX_HOME_APPLIANCES` | `Optional[int]` | `rw` | `None` | Maximum number of home_appliances that can be set |
| measurement_keys | | `Optional[list[str]]` | `ro` | `N/A` | Return the measurement keys for the resource/ device stati that are measurements. |
:::
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
### Example Input
```{eval-rst}
.. code-block:: json
{
"devices": {
"batteries": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"levelized_cost_of_storage_kwh": 0.0,
"max_charge_power_w": 5000,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"min_charge_power_w": 50,
"charge_rates": null,
"min_soc_percentage": 0,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
],
"max_batteries": 1,
"electric_vehicles": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.0,
"max_charge_power_w": 5000,
"min_charge_power_w": 50,
"charge_rates": null,
"min_soc_percentage": 0,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
],
"max_electric_vehicles": 1,
"inverters": [],
"max_inverters": 1,
"home_appliances": [],
"max_home_appliances": 1
}
}
```
### Example Output
```{eval-rst}
.. code-block:: json
{
"devices": {
"batteries": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.0,
"max_charge_power_w": 5000,
"min_charge_power_w": 50,
"charge_rates": null,
"min_soc_percentage": 0,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_batteries": 1,
"electric_vehicles": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.0,
"max_charge_power_w": 5000,
"min_charge_power_w": 50,
"charge_rates": null,
"min_soc_percentage": 0,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
],
"max_electric_vehicles": 1,
"inverters": [],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_inverters": 1,
"home_appliances": [],
"max_home_appliances": 1,
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w",
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
}
```
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
### Home Appliance devices base settings
:::{table} devices::home_appliances::list
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| device_id | `str` | `rw` | `<unknown>` | ID of device |
| consumption_wh | `int` | `rw` | `required` | Energy consumption [Wh]. |
| duration_h | `int` | `rw` | `required` | Usage duration in hours [0 ... 24]. |
| time_windows | `Optional[akkudoktoreos.utils.datetimeutil.TimeWindowSequence]` | `rw` | `None` | Sequence of allowed time windows. Defaults to optimization general time window. |
| measurement_keys | `Optional[list[str]]` | `ro` | `N/A` | Measurement keys for the home appliance stati that are measurements. |
:::
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
#### Example Input
```{eval-rst}
.. code-block:: json
{
"devices": {
"home_appliances": [
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
{
"device_id": "battery1",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
}
},
{
"device_id": "ev1",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
}
},
{
"device_id": "inverter1",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
}
},
{
"device_id": "dishwasher",
"consumption_wh": 2000,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
}
}
]
}
}
```
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
#### Example Output
```{eval-rst}
.. code-block:: json
{
"devices": {
"home_appliances": [
{
"device_id": "battery1",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
},
"measurement_keys": []
},
{
"device_id": "ev1",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
},
"measurement_keys": []
},
{
"device_id": "inverter1",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
},
"measurement_keys": []
},
{
"device_id": "dishwasher",
"consumption_wh": 2000,
"duration_h": 1,
"time_windows": {
"windows": [
{
"start_time": "10:00:00.000000 Europe/Berlin",
"duration": "2 hours",
"day_of_week": null,
"date": null,
"locale": null
}
]
},
"measurement_keys": []
}
]
}
}
```
### Inverter devices base settings
:::{table} devices::inverters::list
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| device_id | `str` | `rw` | `<unknown>` | ID of device |
| max_power_w | `Optional[float]` | `rw` | `None` | Maximum power [W]. |
| battery_id | `Optional[str]` | `rw` | `None` | ID of battery controlled by this inverter. |
| measurement_keys | `Optional[list[str]]` | `ro` | `N/A` | Measurement keys for the inverter stati that are measurements. |
:::
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
#### Example Input
```{eval-rst}
.. code-block:: json
{
"devices": {
"inverters": [
{
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"device_id": "battery1",
"max_power_w": 10000.0,
"battery_id": null
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
},
{
"device_id": "ev1",
"max_power_w": 10000.0,
"battery_id": "battery1"
},
{
"device_id": "inverter1",
"max_power_w": 10000.0,
"battery_id": "battery1"
},
{
"device_id": "dishwasher",
"max_power_w": 10000.0,
"battery_id": "battery1"
}
]
}
}
```
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
#### Example Output
```{eval-rst}
.. code-block:: json
{
"devices": {
"inverters": [
{
"device_id": "battery1",
"max_power_w": 10000.0,
"battery_id": null,
"measurement_keys": []
},
{
"device_id": "ev1",
"max_power_w": 10000.0,
"battery_id": "battery1",
"measurement_keys": []
},
{
"device_id": "inverter1",
"max_power_w": 10000.0,
"battery_id": "battery1",
"measurement_keys": []
},
{
"device_id": "dishwasher",
"max_power_w": 10000.0,
"battery_id": "battery1",
"measurement_keys": []
}
]
}
}
```
### Battery devices base settings
:::{table} devices::batteries::list
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| device_id | `str` | `rw` | `<unknown>` | ID of device |
| capacity_wh | `int` | `rw` | `8000` | Capacity [Wh]. |
| charging_efficiency | `float` | `rw` | `0.88` | Charging efficiency [0.01 ... 1.00]. |
| discharging_efficiency | `float` | `rw` | `0.88` | Discharge efficiency [0.01 ... 1.00]. |
| levelized_cost_of_storage_kwh | `float` | `rw` | `0.0` | Levelized cost of storage (LCOS), the average lifetime cost of delivering one kWh [€/kWh]. |
| max_charge_power_w | `Optional[float]` | `rw` | `5000` | Maximum charging power [W]. |
| min_charge_power_w | `Optional[float]` | `rw` | `50` | Minimum charging power [W]. |
| charge_rates | `Optional[list[float]]` | `rw` | `None` | Charge rates as factor of maximum charging power [0.00 ... 1.00]. None denotes all charge rates are available. |
| min_soc_percentage | `int` | `rw` | `0` | Minimum state of charge (SOC) as percentage of capacity [%]. |
| max_soc_percentage | `int` | `rw` | `100` | Maximum state of charge (SOC) as percentage of capacity [%]. |
| measurement_key_soc_factor | `str` | `ro` | `N/A` | Measurement key for the battery state of charge (SoC) as factor of total capacity [0.0 ... 1.0]. |
| measurement_key_power_l1_w | `str` | `ro` | `N/A` | Measurement key for the L1 power the battery is charged or discharged with [W]. |
| measurement_key_power_l2_w | `str` | `ro` | `N/A` | Measurement key for the L2 power the battery is charged or discharged with [W]. |
| measurement_key_power_l3_w | `str` | `ro` | `N/A` | Measurement key for the L3 power the battery is charged or discharged with [W]. |
| measurement_key_power_3_phase_sym_w | `str` | `ro` | `N/A` | Measurement key for the symmetric 3 phase power the battery is charged or discharged with [W]. |
| measurement_keys | `Optional[list[str]]` | `ro` | `N/A` | Measurement keys for the battery stati that are measurements.
Battery SoC, power. |
:::
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
#### Example Input
```{eval-rst}
.. code-block:: json
{
"devices": {
"batteries": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"min_charge_power_w": 50.0,
"charge_rates": [
0.0,
0.25,
0.5,
0.75,
1.0
],
"min_soc_percentage": 10,
"max_soc_percentage": 100
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
},
{
"device_id": "ev1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": null,
"min_soc_percentage": 10,
"max_soc_percentage": 100
},
{
"device_id": "inverter1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": null,
"min_soc_percentage": 10,
"max_soc_percentage": 100
},
{
"device_id": "dishwasher",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": null,
"min_soc_percentage": 10,
"max_soc_percentage": 100
}
]
}
}
```
#### Example Output
```{eval-rst}
.. code-block:: json
{
"devices": {
"batteries": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": [
0.0,
0.25,
0.5,
0.75,
1.0
],
"min_soc_percentage": 10,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
},
{
"device_id": "ev1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": null,
"min_soc_percentage": 10,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "ev1-soc-factor",
"measurement_key_power_l1_w": "ev1-power-l1-w",
"measurement_key_power_l2_w": "ev1-power-l2-w",
"measurement_key_power_l3_w": "ev1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "ev1-power-3-phase-sym-w",
"measurement_keys": [
"ev1-soc-factor",
"ev1-power-l1-w",
"ev1-power-l2-w",
"ev1-power-l3-w",
"ev1-power-3-phase-sym-w"
]
},
{
"device_id": "inverter1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": null,
"min_soc_percentage": 10,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "inverter1-soc-factor",
"measurement_key_power_l1_w": "inverter1-power-l1-w",
"measurement_key_power_l2_w": "inverter1-power-l2-w",
"measurement_key_power_l3_w": "inverter1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "inverter1-power-3-phase-sym-w",
"measurement_keys": [
"inverter1-soc-factor",
"inverter1-power-l1-w",
"inverter1-power-l2-w",
"inverter1-power-l3-w",
"inverter1-power-3-phase-sym-w"
]
},
{
"device_id": "dishwasher",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.12,
"max_charge_power_w": 5000.0,
"min_charge_power_w": 50.0,
"charge_rates": null,
"min_soc_percentage": 10,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "dishwasher-soc-factor",
"measurement_key_power_l1_w": "dishwasher-power-l1-w",
"measurement_key_power_l2_w": "dishwasher-power-l2-w",
"measurement_key_power_l3_w": "dishwasher-power-l3-w",
"measurement_key_power_3_phase_sym_w": "dishwasher-power-3-phase-sym-w",
"measurement_keys": [
"dishwasher-soc-factor",
"dishwasher-power-l1-w",
"dishwasher-power-l2-w",
"dishwasher-power-l3-w",
"dishwasher-power-3-phase-sym-w"
]
}
]
}
}
```
## Measurement Configuration
:::{table} measurement
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| load_emr_keys | `EOS_MEASUREMENT__LOAD_EMR_KEYS` | `Optional[list[str]]` | `rw` | `None` | The keys of the measurements that are energy meter readings of a load [kWh]. |
| grid_export_emr_keys | `EOS_MEASUREMENT__GRID_EXPORT_EMR_KEYS` | `Optional[list[str]]` | `rw` | `None` | The keys of the measurements that are energy meter readings of energy export to grid [kWh]. |
| grid_import_emr_keys | `EOS_MEASUREMENT__GRID_IMPORT_EMR_KEYS` | `Optional[list[str]]` | `rw` | `None` | The keys of the measurements that are energy meter readings of energy import from grid [kWh]. |
| pv_production_emr_keys | `EOS_MEASUREMENT__PV_PRODUCTION_EMR_KEYS` | `Optional[list[str]]` | `rw` | `None` | The keys of the measurements that are PV production energy meter readings [kWh]. |
| keys | | `list[str]` | `ro` | `N/A` | The keys of the measurements that can be stored. |
:::
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
### Example Input
```{eval-rst}
.. code-block:: json
{
"measurement": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"load_emr_keys": [
"load0_emr"
],
"grid_export_emr_keys": [
"grid_export_emr"
],
"grid_import_emr_keys": [
"grid_import_emr"
],
"pv_production_emr_keys": [
"pv1_emr"
]
}
}
```
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
### Example Output
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
```{eval-rst}
.. code-block:: json
{
"measurement": {
"load_emr_keys": [
"load0_emr"
],
"grid_export_emr_keys": [
"grid_export_emr"
],
"grid_import_emr_keys": [
"grid_import_emr"
],
"pv_production_emr_keys": [
"pv1_emr"
],
"keys": [
"grid_export_emr",
"grid_import_emr",
"load0_emr",
"pv1_emr"
]
}
}
```
## General Optimization Configuration
:::{table} optimization
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| horizon_hours | `EOS_OPTIMIZATION__HORIZON_HOURS` | `Optional[int]` | `rw` | `24` | The general time window within which the energy optimization goal shall be achieved [h]. Defaults to 24 hours. |
| interval | `EOS_OPTIMIZATION__INTERVAL` | `Optional[int]` | `rw` | `3600` | The optimization interval [sec]. |
| genetic | `EOS_OPTIMIZATION__GENETIC` | `Optional[akkudoktoreos.optimization.optimization.GeneticCommonSettings]` | `rw` | `None` | Genetic optimization algorithm configuration. |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"optimization": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"horizon_hours": 24,
"interval": 3600,
"genetic": {
"individuals": 400,
"generations": 400,
"seed": null,
"penalties": {
"ev_soc_miss": 10
}
}
}
}
```
### General Genetic Optimization Algorithm Configuration
:::{table} optimization::genetic
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| individuals | `Optional[int]` | `rw` | `300` | Number of individuals (solutions) to generate for the (initial) generation [>= 10]. Defaults to 300. |
| generations | `Optional[int]` | `rw` | `400` | Number of generations to evaluate the optimal solution [>= 10]. Defaults to 400. |
| seed | `Optional[int]` | `rw` | `None` | Fixed seed for genetic algorithm. Defaults to 'None' which means random seed. |
| penalties | `Optional[dict[str, Union[float, int, str]]]` | `rw` | `None` | A dictionary of penalty function parameters consisting of a penalty function parameter name and the associated value. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"optimization": {
"genetic": {
"individuals": 300,
"generations": 400,
"seed": null,
"penalties": {
"ev_soc_miss": 10
}
}
}
}
```
## General Prediction Configuration
This class provides configuration for prediction settings, allowing users to specify
parameters such as the forecast duration (in hours).
Validators ensure each parameter is within a specified range.
Attributes:
hours (Optional[int]): Number of hours into the future for predictions.
Must be non-negative.
historic_hours (Optional[int]): Number of hours into the past for historical data.
Must be non-negative.
Validators:
validate_hours (int): Ensures `hours` is a non-negative integer.
validate_historic_hours (int): Ensures `historic_hours` is a non-negative integer.
:::{table} prediction
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| hours | `EOS_PREDICTION__HOURS` | `Optional[int]` | `rw` | `48` | Number of hours into the future for predictions |
| historic_hours | `EOS_PREDICTION__HISTORIC_HOURS` | `Optional[int]` | `rw` | `48` | Number of hours into the past for historical predictions data |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"prediction": {
"hours": 48,
"historic_hours": 48
}
}
```
## Electricity Price Prediction Configuration
:::{table} elecprice
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| provider | `EOS_ELECPRICE__PROVIDER` | `Optional[str]` | `rw` | `None` | Electricity price provider id of provider to be used. |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| charges_kwh | `EOS_ELECPRICE__CHARGES_KWH` | `Optional[float]` | `rw` | `None` | Electricity price charges [€/kWh]. Will be added to variable market price. |
| vat_rate | `EOS_ELECPRICE__VAT_RATE` | `Optional[float]` | `rw` | `1.19` | VAT rate factor applied to electricity price when charges are used. |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| provider_settings | `EOS_ELECPRICE__PROVIDER_SETTINGS` | `ElecPriceCommonProviderSettings` | `rw` | `required` | Provider settings |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"elecprice": {
"provider": "ElecPriceAkkudoktor",
"charges_kwh": 0.21,
"vat_rate": 1.19,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"ElecPriceImport": null
}
}
}
```
### Common settings for elecprice data import from file or JSON String
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} elecprice::provider_settings::ElecPriceImport
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| import_file_path | `Union[str, pathlib.Path, NoneType]` | `rw` | `None` | Path to the file to import elecprice data from. |
| import_json | `Optional[str]` | `rw` | `None` | JSON string, dictionary of electricity price forecast value lists. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"elecprice": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"ElecPriceImport": {
"import_file_path": null,
"import_json": "{\"elecprice_marketprice_wh\": [0.0003384, 0.0003318, 0.0003284]}"
}
}
}
}
```
### Electricity Price Prediction Provider Configuration
:::{table} elecprice::provider_settings
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| ElecPriceImport | `Optional[akkudoktoreos.prediction.elecpriceimport.ElecPriceImportCommonSettings]` | `rw` | `None` | ElecPriceImport settings |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"elecprice": {
"provider_settings": {
"ElecPriceImport": null
}
}
}
```
## Feed In Tariff Prediction Configuration
:::{table} feedintariff
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| provider | `EOS_FEEDINTARIFF__PROVIDER` | `Optional[str]` | `rw` | `None` | Feed in tariff provider id of provider to be used. |
| provider_settings | `EOS_FEEDINTARIFF__PROVIDER_SETTINGS` | `FeedInTariffCommonProviderSettings` | `rw` | `required` | Provider settings |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"feedintariff": {
"provider": "FeedInTariffFixed",
"provider_settings": {
"FeedInTariffFixed": null,
"FeedInTariffImport": null
}
}
}
```
### Common settings for feed in tariff data import from file or JSON string
:::{table} feedintariff::provider_settings::FeedInTariffImport
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| import_file_path | `Union[str, pathlib.Path, NoneType]` | `rw` | `None` | Path to the file to import feed in tariff data from. |
| import_json | `Optional[str]` | `rw` | `None` | JSON string, dictionary of feed in tariff forecast value lists. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"feedintariff": {
"provider_settings": {
"FeedInTariffImport": {
"import_file_path": null,
"import_json": "{\"fead_in_tariff_wh\": [0.000078, 0.000078, 0.000023]}"
}
}
}
}
```
### Common settings for elecprice fixed price
:::{table} feedintariff::provider_settings::FeedInTariffFixed
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| feed_in_tariff_kwh | `Optional[float]` | `rw` | `None` | Electricity price feed in tariff [€/kWH]. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"feedintariff": {
"provider_settings": {
"FeedInTariffFixed": {
"feed_in_tariff_kwh": 0.078
}
}
}
}
```
### Feed In Tariff Prediction Provider Configuration
:::{table} feedintariff::provider_settings
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| FeedInTariffFixed | `Optional[akkudoktoreos.prediction.feedintarifffixed.FeedInTariffFixedCommonSettings]` | `rw` | `None` | FeedInTariffFixed settings |
| FeedInTariffImport | `Optional[akkudoktoreos.prediction.feedintariffimport.FeedInTariffImportCommonSettings]` | `rw` | `None` | FeedInTariffImport settings |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"feedintariff": {
"provider_settings": {
"FeedInTariffFixed": null,
"FeedInTariffImport": null
}
}
}
```
## Load Prediction Configuration
:::{table} load
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| provider | `EOS_LOAD__PROVIDER` | `Optional[str]` | `rw` | `None` | Load provider id of provider to be used. |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| provider_settings | `EOS_LOAD__PROVIDER_SETTINGS` | `LoadCommonProviderSettings` | `rw` | `required` | Provider settings |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"load": {
"provider": "LoadAkkudoktor",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"LoadAkkudoktor": null,
"LoadVrm": null,
"LoadImport": null
}
}
}
```
### Common settings for load data import from file or JSON string
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} load::provider_settings::LoadImport
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| import_file_path | `Union[str, pathlib.Path, NoneType]` | `rw` | `None` | Path to the file to import load data from. |
| import_json | `Optional[str]` | `rw` | `None` | JSON string, dictionary of load forecast value lists. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"load": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"LoadImport": {
"import_file_path": null,
"import_json": "{\"load0_mean\": [676.71, 876.19, 527.13]}"
}
}
}
}
```
### Common settings for VRM API
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} load::provider_settings::LoadVrm
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| load_vrm_token | `str` | `rw` | `your-token` | Token for Connecting VRM API |
| load_vrm_idsite | `int` | `rw` | `12345` | VRM-Installation-ID |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"load": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"LoadVrm": {
"load_vrm_token": "your-token",
"load_vrm_idsite": 12345
}
}
}
}
```
### Common settings for load data import from file
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} load::provider_settings::LoadAkkudoktor
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| loadakkudoktor_year_energy | `Optional[float]` | `rw` | `None` | Yearly energy consumption (kWh). |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"load": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"LoadAkkudoktor": {
"loadakkudoktor_year_energy": 40421.0
}
}
}
}
```
### Load Prediction Provider Configuration
:::{table} load::provider_settings
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| LoadAkkudoktor | `Optional[akkudoktoreos.prediction.loadakkudoktor.LoadAkkudoktorCommonSettings]` | `rw` | `None` | LoadAkkudoktor settings |
| LoadVrm | `Optional[akkudoktoreos.prediction.loadvrm.LoadVrmCommonSettings]` | `rw` | `None` | LoadVrm settings |
| LoadImport | `Optional[akkudoktoreos.prediction.loadimport.LoadImportCommonSettings]` | `rw` | `None` | LoadImport settings |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"load": {
"provider_settings": {
"LoadAkkudoktor": null,
"LoadVrm": null,
"LoadImport": null
}
}
}
```
## PV Forecast Configuration
:::{table} pvforecast
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| provider | `EOS_PVFORECAST__PROVIDER` | `Optional[str]` | `rw` | `None` | PVForecast provider id of provider to be used. |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| provider_settings | `EOS_PVFORECAST__PROVIDER_SETTINGS` | `PVForecastCommonProviderSettings` | `rw` | `required` | Provider settings |
| planes | `EOS_PVFORECAST__PLANES` | `Optional[list[akkudoktoreos.prediction.pvforecast.PVForecastPlaneSetting]]` | `rw` | `None` | Plane configuration. |
| max_planes | `EOS_PVFORECAST__MAX_PLANES` | `Optional[int]` | `rw` | `0` | Maximum number of planes that can be set |
| planes_peakpower | | `List[float]` | `ro` | `N/A` | Compute a list of the peak power per active planes. |
| planes_azimuth | | `List[float]` | `ro` | `N/A` | Compute a list of the azimuths per active planes. |
| planes_tilt | | `List[float]` | `ro` | `N/A` | Compute a list of the tilts per active planes. |
| planes_userhorizon | | `Any` | `ro` | `N/A` | Compute a list of the user horizon per active planes. |
| planes_inverter_paco | | `Any` | `ro` | `N/A` | Compute a list of the maximum power rating of the inverter per active planes. |
:::
### Example Input
```{eval-rst}
.. code-block:: json
{
"pvforecast": {
"provider": "PVForecastAkkudoktor",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"PVForecastImport": null,
"PVForecastVrm": null
},
"planes": [
{
"surface_tilt": 10.0,
"surface_azimuth": 180.0,
"userhorizon": [
10.0,
20.0,
30.0
],
"peakpower": 5.0,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 0,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 6000,
"modules_per_string": 20,
"strings_per_inverter": 2
},
{
"surface_tilt": 20.0,
"surface_azimuth": 90.0,
"userhorizon": [
5.0,
15.0,
25.0
],
"peakpower": 3.5,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 1,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 4000,
"modules_per_string": 20,
"strings_per_inverter": 2
}
],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_planes": 1
}
}
```
### Example Output
```{eval-rst}
.. code-block:: json
{
"pvforecast": {
"provider": "PVForecastAkkudoktor",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"PVForecastImport": null,
"PVForecastVrm": null
},
"planes": [
{
"surface_tilt": 10.0,
"surface_azimuth": 180.0,
"userhorizon": [
10.0,
20.0,
30.0
],
"peakpower": 5.0,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 0,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 6000,
"modules_per_string": 20,
"strings_per_inverter": 2
},
{
"surface_tilt": 20.0,
"surface_azimuth": 90.0,
"userhorizon": [
5.0,
15.0,
25.0
],
"peakpower": 3.5,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 1,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 4000,
"modules_per_string": 20,
"strings_per_inverter": 2
}
],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_planes": 1,
"planes_peakpower": [
5.0,
3.5
],
"planes_azimuth": [
180.0,
90.0
],
"planes_tilt": [
10.0,
20.0
],
"planes_userhorizon": [
[
10.0,
20.0,
30.0
],
[
5.0,
15.0,
25.0
]
],
"planes_inverter_paco": [
6000.0,
4000.0
]
}
}
```
### PV Forecast Plane Configuration
:::{table} pvforecast::planes::list
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| surface_tilt | `Optional[float]` | `rw` | `30.0` | Tilt angle from horizontal plane. Ignored for two-axis tracking. |
| surface_azimuth | `Optional[float]` | `rw` | `180.0` | Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270). |
| userhorizon | `Optional[List[float]]` | `rw` | `None` | Elevation of horizon in degrees, at equally spaced azimuth clockwise from north. |
| peakpower | `Optional[float]` | `rw` | `None` | Nominal power of PV system in kW. |
| pvtechchoice | `Optional[str]` | `rw` | `crystSi` | PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'. |
| mountingplace | `Optional[str]` | `rw` | `free` | Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated. |
| loss | `Optional[float]` | `rw` | `14.0` | Sum of PV system losses in percent |
| trackingtype | `Optional[int]` | `rw` | `None` | Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south. |
| optimal_surface_tilt | `Optional[bool]` | `rw` | `False` | Calculate the optimum tilt angle. Ignored for two-axis tracking. |
| optimalangles | `Optional[bool]` | `rw` | `False` | Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking. |
| albedo | `Optional[float]` | `rw` | `None` | Proportion of the light hitting the ground that it reflects back. |
| module_model | `Optional[str]` | `rw` | `None` | Model of the PV modules of this plane. |
| inverter_model | `Optional[str]` | `rw` | `None` | Model of the inverter of this plane. |
| inverter_paco | `Optional[int]` | `rw` | `None` | AC power rating of the inverter [W]. |
| modules_per_string | `Optional[int]` | `rw` | `None` | Number of the PV modules of the strings of this plane. |
| strings_per_inverter | `Optional[int]` | `rw` | `None` | Number of the strings of the inverter of this plane. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"pvforecast": {
"planes": [
{
"surface_tilt": 10.0,
"surface_azimuth": 180.0,
"userhorizon": [
10.0,
20.0,
30.0
],
"peakpower": 5.0,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 0,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 6000,
"modules_per_string": 20,
"strings_per_inverter": 2
},
{
"surface_tilt": 20.0,
"surface_azimuth": 90.0,
"userhorizon": [
5.0,
15.0,
25.0
],
"peakpower": 3.5,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 1,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 4000,
"modules_per_string": 20,
"strings_per_inverter": 2
}
]
}
}
```
### Common settings for VRM API
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} pvforecast::provider_settings::PVForecastVrm
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| pvforecast_vrm_token | `str` | `rw` | `your-token` | Token for Connecting VRM API |
| pvforecast_vrm_idsite | `int` | `rw` | `12345` | VRM-Installation-ID |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"pvforecast": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"PVForecastVrm": {
"pvforecast_vrm_token": "your-token",
"pvforecast_vrm_idsite": 12345
}
}
}
}
```
### Common settings for pvforecast data import from file or JSON string
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} pvforecast::provider_settings::PVForecastImport
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| import_file_path | `Union[str, pathlib.Path, NoneType]` | `rw` | `None` | Path to the file to import PV forecast data from. |
| import_json | `Optional[str]` | `rw` | `None` | JSON string, dictionary of PV forecast value lists. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"pvforecast": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"PVForecastImport": {
"import_file_path": null,
"import_json": "{\"pvforecast_ac_power\": [0, 8.05, 352.91]}"
}
}
}
}
```
### PV Forecast Provider Configuration
:::{table} pvforecast::provider_settings
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| PVForecastImport | `Optional[akkudoktoreos.prediction.pvforecastimport.PVForecastImportCommonSettings]` | `rw` | `None` | PVForecastImport settings |
| PVForecastVrm | `Optional[akkudoktoreos.prediction.pvforecastvrm.PVForecastVrmCommonSettings]` | `rw` | `None` | PVForecastVrm settings |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"pvforecast": {
"provider_settings": {
"PVForecastImport": null,
"PVForecastVrm": null
}
}
}
```
## Weather Forecast Configuration
:::{table} weather
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
| provider | `EOS_WEATHER__PROVIDER` | `Optional[str]` | `rw` | `None` | Weather provider id of provider to be used. |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| provider_settings | `EOS_WEATHER__PROVIDER_SETTINGS` | `WeatherCommonProviderSettings` | `rw` | `required` | Provider settings |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"weather": {
"provider": "WeatherImport",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"WeatherImport": null
}
}
}
```
### Common settings for weather data import from file or JSON string
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
:::{table} weather::provider_settings::WeatherImport
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| import_file_path | `Union[str, pathlib.Path, NoneType]` | `rw` | `None` | Path to the file to import weather data from. |
| import_json | `Optional[str]` | `rw` | `None` | JSON string, dictionary of weather forecast value lists. |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"weather": {
"provider_settings": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"WeatherImport": {
"import_file_path": null,
"import_json": "{\"weather_temp_air\": [18.3, 17.8, 16.9]}"
}
}
}
}
```
### Weather Forecast Provider Configuration
:::{table} weather::provider_settings
:widths: 10 10 5 5 30
:align: left
| Name | Type | Read-Only | Default | Description |
| ---- | ---- | --------- | ------- | ----------- |
| WeatherImport | `Optional[akkudoktoreos.prediction.weatherimport.WeatherImportCommonSettings]` | `rw` | `None` | WeatherImport settings |
:::
#### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"weather": {
"provider_settings": {
"WeatherImport": null
}
}
}
```
## Server Configuration
:::{table} server
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| host | `EOS_SERVER__HOST` | `Optional[str]` | `rw` | `127.0.0.1` | EOS server IP address. Defaults to 127.0.0.1. |
| port | `EOS_SERVER__PORT` | `Optional[int]` | `rw` | `8503` | EOS server IP port number. Defaults to 8503. |
| verbose | `EOS_SERVER__VERBOSE` | `Optional[bool]` | `rw` | `False` | Enable debug output |
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
| startup_eosdash | `EOS_SERVER__STARTUP_EOSDASH` | `Optional[bool]` | `rw` | `True` | EOS server to start EOSdash server. Defaults to True. |
| eosdash_host | `EOS_SERVER__EOSDASH_HOST` | `Optional[str]` | `rw` | `None` | EOSdash server IP address. Defaults to EOS server IP address. |
| eosdash_port | `EOS_SERVER__EOSDASH_PORT` | `Optional[int]` | `rw` | `None` | EOSdash server IP port number. Defaults to EOS server IP port number + 1. |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"server": {
"host": "127.0.0.1",
"port": 8503,
"verbose": false,
"startup_eosdash": true,
"eosdash_host": "127.0.0.1",
"eosdash_port": 8504
}
}
```
## Utils Configuration
:::{table} utils
:widths: 10 20 10 5 5 30
:align: left
| Name | Environment Variable | Type | Read-Only | Default | Description |
| ---- | -------------------- | ---- | --------- | ------- | ----------- |
:::
### Example Input/Output
```{eval-rst}
.. code-block:: json
{
"utils": {}
}
```
## Full example Config
```{eval-rst}
.. code-block:: json
{
"general": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"version": "0.1.0+dev",
"data_folder_path": null,
"data_output_subpath": "output",
"latitude": 52.52,
"longitude": 13.405
},
Improve caching. (#431) * Move the caching module to core. Add an in memory cache that for caching function and method results during an energy management run (optimization run). Two decorators are provided for methods and functions. * Improve the file cache store by load and save functions. Make EOS load the cache file store on startup and save it on shutdown. Add a cyclic task that cleans the cache file store from outdated cache files. * Improve startup of EOSdash by EOS Make EOS starting EOSdash adhere to path configuration given in EOS. The whole environment from EOS is now passed to EOSdash. Should also prevent test errors due to unwanted/ wrong config file creation. Both servers now provide a health endpoint that can be used to detect whether the server is running. This is also used for testing now. * Improve startup of EOS EOS now has got an energy management task that runs shortly after startup. It tries to execute energy management runs with predictions newly fetched or initialized from cached data on first run. * Improve shutdown of EOS EOS has now a shutdown task that shuts EOS down gracefully with some time delay to allow REST API requests for shutdwon or restart to be fully serviced. * Improve EMS Add energy management task for repeated energy management controlled by startup delay and interval configuration parameters. Translate EnergieManagementSystem to english EnergyManagement. * Add administration endpoints - endpoints to control caching from REST API. - endpoints to control server restart (will not work on Windows) and shutdown from REST API * Improve doc generation Use "\n" linenend convention also on Windows when generating doc files. Replace Windows specific 127.0.0.1 address by standard 0.0.0.0. * Improve test support (to be able to test caching) - Add system test option to pytest for running tests with "real" resources - Add new test fixture to start server for test class and test function - Make kill signal adapt to Windows/ Linux - Use consistently "\n" for lineends when writing text files in doc test - Fix test_logging under Windows - Fix conftest config_default_dirs test fixture under Windows From @Lasall * Improve Windows support - Use 127.0.0.1 as default config host (model defaults) and addionally redirect 0.0.0.0 to localhost on Windows (because default config file still has 0.0.0.0). - Update install/startup instructions as package installation is required atm. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-02-12 21:35:51 +01:00
"cache": {
"subpath": "cache",
"cleanup_interval": 300.0
},
"ems": {
"startup_delay": 5.0,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"interval": 300.0,
"mode": "OPTIMIZATION"
Improve caching. (#431) * Move the caching module to core. Add an in memory cache that for caching function and method results during an energy management run (optimization run). Two decorators are provided for methods and functions. * Improve the file cache store by load and save functions. Make EOS load the cache file store on startup and save it on shutdown. Add a cyclic task that cleans the cache file store from outdated cache files. * Improve startup of EOSdash by EOS Make EOS starting EOSdash adhere to path configuration given in EOS. The whole environment from EOS is now passed to EOSdash. Should also prevent test errors due to unwanted/ wrong config file creation. Both servers now provide a health endpoint that can be used to detect whether the server is running. This is also used for testing now. * Improve startup of EOS EOS now has got an energy management task that runs shortly after startup. It tries to execute energy management runs with predictions newly fetched or initialized from cached data on first run. * Improve shutdown of EOS EOS has now a shutdown task that shuts EOS down gracefully with some time delay to allow REST API requests for shutdwon or restart to be fully serviced. * Improve EMS Add energy management task for repeated energy management controlled by startup delay and interval configuration parameters. Translate EnergieManagementSystem to english EnergyManagement. * Add administration endpoints - endpoints to control caching from REST API. - endpoints to control server restart (will not work on Windows) and shutdown from REST API * Improve doc generation Use "\n" linenend convention also on Windows when generating doc files. Replace Windows specific 127.0.0.1 address by standard 0.0.0.0. * Improve test support (to be able to test caching) - Add system test option to pytest for running tests with "real" resources - Add new test fixture to start server for test class and test function - Make kill signal adapt to Windows/ Linux - Use consistently "\n" for lineends when writing text files in doc test - Fix test_logging under Windows - Fix conftest config_default_dirs test fixture under Windows From @Lasall * Improve Windows support - Use 127.0.0.1 as default config host (model defaults) and addionally redirect 0.0.0.0 to localhost on Windows (because default config file still has 0.0.0.0). - Update install/startup instructions as package installation is required atm. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-02-12 21:35:51 +01:00
},
"logging": {
"console_level": "TRACE",
"file_level": "TRACE"
},
"devices": {
"batteries": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"levelized_cost_of_storage_kwh": 0.0,
"max_charge_power_w": 5000,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"min_charge_power_w": 50,
"charge_rates": null,
"min_soc_percentage": 0,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
],
"max_batteries": 1,
"electric_vehicles": [
{
"device_id": "battery1",
"capacity_wh": 8000,
"charging_efficiency": 0.88,
"discharging_efficiency": 0.88,
"levelized_cost_of_storage_kwh": 0.0,
"max_charge_power_w": 5000,
"min_charge_power_w": 50,
"charge_rates": null,
"min_soc_percentage": 0,
"max_soc_percentage": 100,
"measurement_key_soc_factor": "battery1-soc-factor",
"measurement_key_power_l1_w": "battery1-power-l1-w",
"measurement_key_power_l2_w": "battery1-power-l2-w",
"measurement_key_power_l3_w": "battery1-power-l3-w",
"measurement_key_power_3_phase_sym_w": "battery1-power-3-phase-sym-w",
"measurement_keys": [
"battery1-soc-factor",
"battery1-power-l1-w",
"battery1-power-l2-w",
"battery1-power-l3-w",
"battery1-power-3-phase-sym-w"
]
}
],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_electric_vehicles": 1,
"inverters": [],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_inverters": 1,
"home_appliances": [],
"max_home_appliances": 1
},
"measurement": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"load_emr_keys": [
"load0_emr"
],
"grid_export_emr_keys": [
"grid_export_emr"
],
"grid_import_emr_keys": [
"grid_import_emr"
],
"pv_production_emr_keys": [
"pv1_emr"
]
},
"optimization": {
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"horizon_hours": 24,
"interval": 3600,
"genetic": {
"individuals": 400,
"generations": 400,
"seed": null,
"penalties": {
"ev_soc_miss": 10
}
}
},
"prediction": {
"hours": 48,
"historic_hours": 48
},
"elecprice": {
"provider": "ElecPriceAkkudoktor",
"charges_kwh": 0.21,
"vat_rate": 1.19,
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"ElecPriceImport": null
}
},
"feedintariff": {
"provider": "FeedInTariffFixed",
"provider_settings": {
"FeedInTariffFixed": null,
"FeedInTariffImport": null
}
},
"load": {
"provider": "LoadAkkudoktor",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"LoadAkkudoktor": null,
"LoadVrm": null,
"LoadImport": null
}
},
"pvforecast": {
"provider": "PVForecastAkkudoktor",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"PVForecastImport": null,
"PVForecastVrm": null
},
"planes": [
{
"surface_tilt": 10.0,
"surface_azimuth": 180.0,
"userhorizon": [
10.0,
20.0,
30.0
],
"peakpower": 5.0,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 0,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 6000,
"modules_per_string": 20,
"strings_per_inverter": 2
},
{
"surface_tilt": 20.0,
"surface_azimuth": 90.0,
"userhorizon": [
5.0,
15.0,
25.0
],
"peakpower": 3.5,
"pvtechchoice": "crystSi",
"mountingplace": "free",
"loss": 14.0,
"trackingtype": 1,
"optimal_surface_tilt": false,
"optimalangles": false,
"albedo": null,
"module_model": null,
"inverter_model": null,
"inverter_paco": 4000,
"modules_per_string": 20,
"strings_per_inverter": 2
}
],
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"max_planes": 1
},
"weather": {
"provider": "WeatherImport",
fix: automatic optimization (#596) This fix implements the long term goal to have the EOS server run optimization (or energy management) on regular intervals automatically. Thus clients can request the current energy management plan at any time and it is updated on regular intervals without interaction by the client. This fix started out to "only" make automatic optimization (or energy management) runs working. It turned out there are several endpoints that in some way update predictions or run the optimization. To lock against such concurrent attempts the code had to be refactored to allow control of execution. During refactoring it became clear that some classes and files are named without a proper reference to their usage. Thus not only refactoring but also renaming became necessary. The names are still not the best, but I hope they are more intuitive. The fix includes several bug fixes that are not directly related to the automatic optimization but are necessary to keep EOS running properly to do the automatic optimization and to test and document the changes. This is a breaking change as the configuration structure changed once again and the server API was also enhanced and streamlined. The server API that is used by Andreas and Jörg in their videos has not changed. * fix: automatic optimization Allow optimization to automatically run on configured intervals gathering all optimization parameters from configuration and predictions. The automatic run can be configured to only run prediction updates skipping the optimization. Extend documentaion to also cover automatic optimization. Lock automatic runs against runs initiated by the /optimize or other endpoints. Provide new endpoints to retrieve the energy management plan and the genetic solution of the latest automatic optimization run. Offload energy management to thread pool executor to keep the app more responsive during the CPU heavy optimization run. * fix: EOS servers recognize environment variables on startup Force initialisation of EOS configuration on server startup to assure all sources of EOS configuration are properly set up and read. Adapt server tests and configuration tests to also test for environment variable configuration. * fix: Remove 0.0.0.0 to localhost translation under Windows EOS imposed a 0.0.0.0 to localhost translation under Windows for convenience. This caused some trouble in user configurations. Now, as the default IP address configuration is 127.0.0.1, the user is responsible for to set up the correct Windows compliant IP address. * fix: allow names for hosts additional to IP addresses * fix: access pydantic model fields by class Access by instance is deprecated. * fix: down sampling key_to_array * fix: make cache clear endpoint clear all cache files Make /v1/admin/cache/clear clear all cache files. Before it only cleared expired cache files by default. Add new endpoint /v1/admin/clear-expired to only clear expired cache files. * fix: timezonefinder returns Europe/Paris instead of Europe/Berlin timezonefinder 8.10 got more inaccurate for timezones in europe as there is a common timezone. Use new package tzfpy instead which is still returning Europe/Berlin if you are in Germany. tzfpy also claims to be faster than timezonefinder. * fix: provider settings configuration Provider configuration used to be a union holding the settings for several providers. Pydantic union handling does not always find the correct type for a provider setting. This led to exceptions in specific configurations. Now provider settings are explicit comfiguration items for each possible provider. This is a breaking change as the configuration structure was changed. * fix: ClearOutside weather prediction irradiance calculation Pvlib needs a pandas time index. Convert time index. * fix: test config file priority Do not use config_eos fixture as this fixture already creates a config file. * fix: optimization sample request documentation Provide all data in documentation of optimization sample request. * fix: gitlint blocking pip dependency resolution Replace gitlint by commitizen. Gitlint is not actively maintained anymore. Gitlint dependencies blocked pip from dependency resolution. * fix: sync pre-commit config to actual dependency requirements .pre-commit-config.yaml was out of sync, also requirements-dev.txt. * fix: missing babel in requirements.txt Add babel to requirements.txt * feat: setup default device configuration for automatic optimization In case the parameters for automatic optimization are not fully defined a default configuration is setup to allow the automatic energy management run. The default configuration may help the user to correctly define the device configuration. * feat: allow configuration of genetic algorithm parameters The genetic algorithm parameters for number of individuals, number of generations, the seed and penalty function parameters are now avaliable as configuration options. * feat: allow configuration of home appliance time windows The time windows a home appliance is allowed to run are now configurable by the configuration (for /v1 API) and also by the home appliance parameters (for the classic /optimize API). If there is no such configuration the time window defaults to optimization hours, which was the standard before the change. Documentation on how to configure time windows is added. * feat: standardize mesaurement keys for battery/ ev SoC measurements The standardized measurement keys to report battery SoC to the device simulations can now be retrieved from the device configuration as a read-only config option. * feat: feed in tariff prediction Add feed in tarif predictions needed for automatic optimization. The feed in tariff can be retrieved as fixed feed in tarif or can be imported. Also add tests for the different feed in tariff providers. Extend documentation to cover the feed in tariff providers. * feat: add energy management plan based on S2 standard instructions EOS can generate an energy management plan as a list of simple instructions. May be retrieved by the /v1/energy-management/plan endpoint. The instructions loosely follow the S2 energy management standard. * feat: make measurement keys configurable by EOS configuration. The fixed measurement keys are replaced by configurable measurement keys. * feat: make pendulum DateTime, Date, Duration types usable for pydantic models Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are added to the datetimeutil utility. Remove custom made pendulum adaptations from EOS pydantic module. Make EOS modules use the pydantic pendulum types managed by the datetimeutil module instead of the core pendulum types. * feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil. The time windows are are added to support home appliance time window configuration. All time classes are also pydantic models. Time is the base class for time definition derived from pendulum.Time. * feat: Extend DataRecord by configurable field like data. Configurable field like data was added to support the configuration of measurement records. * feat: Add additional information to health information Version information is added to the health endpoints of eos and eosDash. The start time of the last optimization and the latest run time of the energy management is added to the EOS health information. * feat: add pydantic merge model tests * feat: add plan tab to EOSdash The plan tab displays the current energy management instructions. * feat: add predictions tab to EOSdash The predictions tab displays the current predictions. * feat: add cache management to EOSdash admin tab The admin tab is extended by a section for cache management. It allows to clear the cache. * feat: add about tab to EOSdash The about tab resembles the former hello tab and provides extra information. * feat: Adapt changelog and prepare for release management Release management using commitizen is added. The changelog file is adapted and teh changelog and a description for release management is added in the documentation. * feat(doc): Improve install and devlopment documentation Provide a more concise installation description in Readme.md and add extra installation page and development page to documentation. * chore: Use memory cache for interpolation instead of dict in inverter Decorate calculate_self_consumption() with @cachemethod_until_update to cache results in memory during an energy management/ optimization run. Replacement of dict type caching in inverter is now possible because all optimization runs are properly locked and the memory cache CacheUntilUpdateStore is properly cleared at the start of any energy management/ optimization operation. * chore: refactor genetic Refactor the genetic algorithm modules for enhanced module structure and better readability. Removed unnecessary and overcomplex devices singleton. Also split devices configuration from genetic algorithm parameters to allow further development independently from genetic algorithm parameter format. Move charge rates configuration for electric vehicles from optimization to devices configuration to allow to have different charge rates for different cars in the future. * chore: Rename memory cache to CacheEnergyManagementStore The name better resembles the task of the cache to chache function and method results for an energy management run. Also the decorator functions are renamed accordingly: cachemethod_energy_management, cache_energy_management * chore: use class properties for config/ems/prediction mixin classes * chore: skip debug logs from mathplotlib Mathplotlib is very noisy in debug mode. * chore: automatically sync bokeh js to bokeh python package bokeh was updated to 3.8.0, make JS CDN automatically follow the package version. * chore: rename hello.py to about.py Make hello.py the adapted EOSdash about page. * chore: remove demo page from EOSdash As no the plan and prediction pages are working without configuration, the demo page is no longer necessary * chore: split test_server.py for system test Split test_server.py to create explicit test_system.py for system tests. * chore: move doc utils to generate_config_md.py The doc utils are only used in scripts/generate_config_md.py. Move it there to attribute for strong cohesion. * chore: improve pydantic merge model documentation * chore: remove pendulum warning from readme * chore: remove GitHub discussions from contributing documentation Github discussions is to be replaced by Akkudoktor.net. * chore(release): bump version to 0.1.0+dev for development * build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1 bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break. * build(deps): bump uvicorn from 0.36.0 to 0.37.0 BREAKING CHANGE: EOS configuration changed. V1 API changed. - The available_charge_rates_percent configuration is removed from optimization. Use the new charge_rate configuration for the electric vehicle - Optimization configuration parameter hours renamed to horizon_hours - Device configuration now has to provide the number of devices and device properties per device. - Specific prediction provider configuration to be provided by explicit configuration item (no union for all providers). - Measurement keys to be provided as a list. - New feed in tariff providers have to be configured. - /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints. - /v1/admin/cache/clear now clears all cache files. Use /v1/admin/cache/clear-expired to only clear all expired cache files. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
2025-10-28 02:50:31 +01:00
"provider_settings": {
"WeatherImport": null
}
},
"server": {
"host": "127.0.0.1",
"port": 8503,
"verbose": false,
"startup_eosdash": true,
"eosdash_host": "127.0.0.1",
"eosdash_port": 8504
},
"utils": {}
}
```