mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-30 06:16:21 +00:00
151 lines
5.1 KiB
Python
151 lines
5.1 KiB
Python
|
|
import json
|
||
|
|
from pathlib import Path
|
||
|
|
from typing import Any
|
||
|
|
from unittest.mock import patch
|
||
|
|
|
||
|
|
import pytest
|
||
|
|
|
||
|
|
from akkudoktoreos.config.config import ConfigEOS
|
||
|
|
from akkudoktoreos.core.cache import CacheEnergyManagementStore
|
||
|
|
from akkudoktoreos.core.ems import get_ems
|
||
|
|
from akkudoktoreos.optimization.genetic.genetic import GeneticOptimization
|
||
|
|
from akkudoktoreos.optimization.genetic.geneticparams import (
|
||
|
|
GeneticOptimizationParameters,
|
||
|
|
)
|
||
|
|
from akkudoktoreos.optimization.genetic.geneticsolution import GeneticSolution
|
||
|
|
from akkudoktoreos.utils.datetimeutil import to_datetime
|
||
|
|
from akkudoktoreos.utils.visualize import (
|
||
|
|
prepare_visualize, # Import the new prepare_visualize
|
||
|
|
)
|
||
|
|
|
||
|
|
ems_eos = get_ems()
|
||
|
|
|
||
|
|
DIR_TESTDATA = Path(__file__).parent / "testdata"
|
||
|
|
|
||
|
|
|
||
|
|
def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
|
||
|
|
assert set(actual) == set(expected)
|
||
|
|
|
||
|
|
for key, value in expected.items():
|
||
|
|
if isinstance(value, dict):
|
||
|
|
assert isinstance(actual[key], dict)
|
||
|
|
compare_dict(actual[key], value)
|
||
|
|
elif isinstance(value, list):
|
||
|
|
assert isinstance(actual[key], list)
|
||
|
|
assert actual[key] == pytest.approx(value)
|
||
|
|
else:
|
||
|
|
assert actual[key] == pytest.approx(value)
|
||
|
|
|
||
|
|
|
||
|
|
@pytest.mark.parametrize(
|
||
|
|
"fn_in, fn_out, ngen",
|
||
|
|
[
|
||
|
|
("optimize_input_1.json", "optimize_result_1.json", 3),
|
||
|
|
("optimize_input_2.json", "optimize_result_2.json", 3),
|
||
|
|
("optimize_input_2.json", "optimize_result_2_full.json", 400),
|
||
|
|
],
|
||
|
|
)
|
||
|
|
def test_optimize(
|
||
|
|
fn_in: str,
|
||
|
|
fn_out: str,
|
||
|
|
ngen: int,
|
||
|
|
config_eos: ConfigEOS,
|
||
|
|
is_full_run: bool,
|
||
|
|
):
|
||
|
|
"""Test optimierung_ems."""
|
||
|
|
# Test parameters
|
||
|
|
fixed_start_hour = 10
|
||
|
|
fixed_seed = 42
|
||
|
|
|
||
|
|
# Assure configuration holds the correct values
|
||
|
|
config_eos.merge_settings_from_dict(
|
||
|
|
{
|
||
|
|
"prediction": {
|
||
|
|
"hours": 48
|
||
|
|
},
|
||
|
|
"optimization": {
|
||
|
|
"horizon_hours": 48,
|
||
|
|
"genetic": {
|
||
|
|
"individuals": 300,
|
||
|
|
"generations": 10,
|
||
|
|
"penalties": {
|
||
|
|
"ev_soc_miss": 10
|
||
|
|
}
|
||
|
|
}
|
||
|
|
},
|
||
|
|
"devices": {
|
||
|
|
"max_electric_vehicles": 1,
|
||
|
|
"electric_vehicles": [
|
||
|
|
{
|
||
|
|
"charge_rates": [0.0, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0],
|
||
|
|
}
|
||
|
|
],
|
||
|
|
}
|
||
|
|
}
|
||
|
|
)
|
||
|
|
|
||
|
|
# Load input and output data
|
||
|
|
file = DIR_TESTDATA / fn_in
|
||
|
|
with file.open("r") as f_in:
|
||
|
|
input_data = GeneticOptimizationParameters(**json.load(f_in))
|
||
|
|
|
||
|
|
file = DIR_TESTDATA / fn_out
|
||
|
|
# In case a new test case is added, we don't want to fail here, so the new output is written
|
||
|
|
# to disk before
|
||
|
|
try:
|
||
|
|
with file.open("r") as f_out:
|
||
|
|
expected_data = json.load(f_out)
|
||
|
|
expected_result = GeneticSolution(**expected_data)
|
||
|
|
except FileNotFoundError:
|
||
|
|
pass
|
||
|
|
|
||
|
|
# Fake energy management run start datetime
|
||
|
|
ems_eos.set_start_datetime(to_datetime().set(hour=fixed_start_hour))
|
||
|
|
|
||
|
|
# Throw away any cached results of the last energy management run.
|
||
|
|
CacheEnergyManagementStore().clear()
|
||
|
|
|
||
|
|
genetic_optimization = GeneticOptimization(fixed_seed=fixed_seed)
|
||
|
|
|
||
|
|
# Activate with pytest --full-run
|
||
|
|
if ngen > 10 and not is_full_run:
|
||
|
|
pytest.skip()
|
||
|
|
|
||
|
|
visualize_filename = str((DIR_TESTDATA / f"new_{fn_out}").with_suffix(".pdf"))
|
||
|
|
|
||
|
|
with patch(
|
||
|
|
"akkudoktoreos.utils.visualize.prepare_visualize",
|
||
|
|
side_effect=lambda parameters, results, *args, **kwargs: prepare_visualize(
|
||
|
|
parameters, results, filename=visualize_filename, **kwargs
|
||
|
|
),
|
||
|
|
) as prepare_visualize_patch:
|
||
|
|
# Call the optimization function
|
||
|
|
genetic_solution = genetic_optimization.optimierung_ems(
|
||
|
|
parameters=input_data, start_hour=fixed_start_hour, ngen=ngen
|
||
|
|
)
|
||
|
|
# The function creates a visualization result PDF as a side-effect.
|
||
|
|
prepare_visualize_patch.assert_called_once()
|
||
|
|
assert Path(visualize_filename).exists()
|
||
|
|
|
||
|
|
# Write test output to file, so we can take it as new data on intended change
|
||
|
|
TESTDATA_FILE = DIR_TESTDATA / f"new_{fn_out}"
|
||
|
|
with TESTDATA_FILE.open("w", encoding="utf-8", newline="\n") as f_out:
|
||
|
|
f_out.write(genetic_solution.model_dump_json(indent=4, exclude_unset=True))
|
||
|
|
|
||
|
|
assert genetic_solution.result.Gesamtbilanz_Euro == pytest.approx(
|
||
|
|
expected_result.result.Gesamtbilanz_Euro
|
||
|
|
)
|
||
|
|
|
||
|
|
# Assert that the output contains all expected entries.
|
||
|
|
# This does not assert that the optimization always gives the same result!
|
||
|
|
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
|
||
|
|
compare_dict(genetic_solution.model_dump(), expected_result.model_dump())
|
||
|
|
|
||
|
|
# Check the correct generic optimization solution is created
|
||
|
|
optimization_solution = genetic_solution.optimization_solution()
|
||
|
|
# @TODO
|
||
|
|
|
||
|
|
# Check the correct generic energy management plan is created
|
||
|
|
plan = genetic_solution.energy_management_plan()
|
||
|
|
# @TODO
|