2024-05-01 10:02:16 +02:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
2024-07-30 09:22:55 +02:00
|
|
|
import joblib, json
|
2024-05-01 10:02:16 +02:00
|
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
from sklearn.gaussian_process import GaussianProcessRegressor
|
2024-07-30 09:22:55 +02:00
|
|
|
from sklearn.gaussian_process.kernels import RBF, ConstantKernel, WhiteKernel, Matern,DotProduct
|
2024-05-01 10:02:16 +02:00
|
|
|
from sklearn.model_selection import train_test_split
|
2024-07-30 09:22:55 +02:00
|
|
|
from tensorflow.keras.models import Sequential, load_model
|
|
|
|
from tensorflow.keras.layers import LSTM, Dense,Dropout
|
|
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from tensorflow.keras.optimizers import Adam
|
|
|
|
from tensorflow.keras.regularizers import l1, l2, l1_l2
|
|
|
|
from scipy.signal import savgol_filter
|
2024-05-01 10:02:16 +02:00
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
2024-07-30 09:22:55 +02:00
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
from tensorflow.keras.models import Sequential
|
|
|
|
from tensorflow.keras.layers import LSTM, Dense, Dropout, RepeatVector, TimeDistributed
|
|
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
from tensorflow.keras.optimizers import Adam
|
|
|
|
from tensorflow.keras.regularizers import l2
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
|
|
|
|
|
|
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
class BatterySocPredictorGauss:
|
2024-05-01 10:02:16 +02:00
|
|
|
def __init__(self):
|
|
|
|
# Initialisierung von Scaler und Gaußschem Prozessmodell
|
|
|
|
self.scaler = StandardScaler()
|
2024-07-30 09:22:55 +02:00
|
|
|
kernel = WhiteKernel(1.0, (1e-7, 1e3)) + Matern(length_scale=(0.1,0.1,0.1), length_scale_bounds=((1e-7, 1e3),(1e-7, 1e3),(1e-7, 1e3))) + DotProduct()
|
|
|
|
self.gp = GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=10, alpha=1e-3, normalize_y=True)
|
2024-05-01 10:02:16 +02:00
|
|
|
|
|
|
|
def fit(self, X, y):
|
|
|
|
# Transformiere die Zielvariable
|
|
|
|
y_transformed = np.log(y / (101 - y))
|
|
|
|
# Skaliere die Features
|
|
|
|
X_scaled = self.scaler.fit_transform(X)
|
|
|
|
# Trainiere das Modell
|
|
|
|
self.gp.fit(X_scaled, y_transformed)
|
|
|
|
|
|
|
|
def predict(self, X):
|
|
|
|
# Skaliere die Features
|
|
|
|
X_scaled = self.scaler.transform(X)
|
|
|
|
# Vorhersagen und Unsicherheiten
|
|
|
|
y_pred_transformed, sigma_transformed = self.gp.predict(X_scaled, return_std=True)
|
|
|
|
# Rücktransformieren der Vorhersagen
|
|
|
|
y_pred = 101 / (1 + np.exp(-y_pred_transformed))
|
|
|
|
# Rücktransformieren der Unsicherheiten
|
|
|
|
sigmoid_y_pred = 1 / (1 + np.exp(-y_pred_transformed))
|
|
|
|
sigma = sigma_transformed * 101 * sigmoid_y_pred * (1 - sigmoid_y_pred)
|
2024-07-30 09:22:55 +02:00
|
|
|
return y_pred
|
2024-05-01 10:02:16 +02:00
|
|
|
|
|
|
|
def save_model(self, file_path):
|
|
|
|
# Speichere das gesamte Modell-Objekt
|
|
|
|
joblib.dump(self, file_path)
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def load_model(file_path):
|
|
|
|
# Lade das Modell-Objekt
|
|
|
|
return joblib.load(file_path)
|
2024-07-30 09:22:55 +02:00
|
|
|
|
|
|
|
|
|
|
|
class BatterySoCPredictorLSTM:
|
|
|
|
def __init__(self, model_path=None, scaler_path=None, gauss=None):
|
|
|
|
self.scaler = MinMaxScaler(feature_range=(0, 1))
|
|
|
|
self.target_scaler = MinMaxScaler(feature_range=(0, 1))
|
|
|
|
self.seq_length = 5 # Anzahl der Zeitschritte in der Eingabesequenz
|
|
|
|
self.n_future_steps = 1 # Anzahl der zukünftigen Schritte, die vorhergesagt werden sollen
|
|
|
|
self.gauss_model = BatterySocPredictorGauss.load_model(gauss)
|
|
|
|
|
|
|
|
if model_path:
|
|
|
|
self.model = load_model(model_path)
|
|
|
|
else:
|
|
|
|
self.model = self._build_model()
|
|
|
|
|
|
|
|
if scaler_path:
|
|
|
|
self.load_scalers(scaler_path)
|
|
|
|
|
|
|
|
def _build_model(self):
|
|
|
|
regu = 0.00 # Regularisierungsrate
|
|
|
|
model = Sequential()
|
|
|
|
model.add(LSTM(20, activation='relu', return_sequences=True, input_shape=(self.seq_length, 4), kernel_regularizer=l2(regu)))
|
|
|
|
model.add(LSTM(20, activation='relu', return_sequences=False, kernel_regularizer=l2(regu)))
|
|
|
|
model.add(RepeatVector(self.n_future_steps))
|
|
|
|
model.add(LSTM(20, activation='relu', return_sequences=True, kernel_regularizer=l2(regu)))
|
|
|
|
model.add(TimeDistributed(Dense(1, kernel_regularizer=l2(regu)))) # TimeDistributed Layer für Multi-Step Output
|
|
|
|
|
|
|
|
optimizer = Adam(learning_rate=0.0005)
|
|
|
|
model.compile(optimizer=optimizer, loss='mae')
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
|
|
def fit(self, data_path, epochs=100, batch_size=50, validation_split=0.1):
|
|
|
|
data = pd.read_csv(data_path)
|
|
|
|
data['Time'] = pd.to_datetime(data['Time'], unit='ms')
|
|
|
|
data.set_index('Time', inplace=True)
|
|
|
|
|
|
|
|
data.dropna(inplace=True)
|
|
|
|
|
|
|
|
# Gauss
|
|
|
|
#data["temperature_mean"] = data[["data","data.1"]].mean(axis=1)
|
|
|
|
#data[['battery_voltage', 'battery_current', 'data']]
|
|
|
|
data["battery_soc_gauss"] = self.gauss_model.predict(data[['battery_voltage', 'battery_current', 'data']].values)
|
|
|
|
# print(data)
|
|
|
|
# sys.exit()
|
|
|
|
scaled_data = self.scaler.fit_transform(data[['battery_voltage', 'battery_current', 'data', 'battery_soc_gauss']].values)
|
|
|
|
data['scaled_soc'] = self.target_scaler.fit_transform(data[['battery_soc']])
|
|
|
|
|
|
|
|
X, y = self._create_sequences(scaled_data, self.seq_length, self.n_future_steps)
|
|
|
|
|
|
|
|
print(y.shape)
|
|
|
|
|
|
|
|
self.model.fit(X, y, epochs=epochs, batch_size=batch_size, validation_split=validation_split)
|
|
|
|
|
|
|
|
def _create_sequences(self, data, seq_length, n_future_steps):
|
|
|
|
xs, ys = [], []
|
|
|
|
for i in range(len(data) - seq_length - n_future_steps):
|
|
|
|
x = data[i:(i + seq_length)]
|
|
|
|
y = data[(i + seq_length):(i + seq_length + n_future_steps), -1] # Multi-Step Output
|
|
|
|
xs.append(x)
|
|
|
|
ys.append(y)
|
|
|
|
return np.array(xs), np.array(ys)
|
|
|
|
|
|
|
|
# def predict(self, test_data_path):
|
|
|
|
# test_data = pd.read_csv(test_data_path)
|
|
|
|
# test_data['Time'] = pd.to_datetime(test_data['Time'], unit='ms')
|
|
|
|
# test_data.set_index('Time', inplace=True)
|
|
|
|
# test_data.replace('undefined', np.nan, inplace=True)
|
|
|
|
# test_data.dropna(inplace=True)
|
|
|
|
|
|
|
|
# test_data['battery_voltage'] = pd.to_numeric(test_data['battery_voltage'], errors='coerce')
|
|
|
|
# test_data['battery_current'] = pd.to_numeric(test_data['battery_current'], errors='coerce')
|
|
|
|
# test_data['battery_soc'] = pd.to_numeric(test_data['battery_soc'], errors='coerce')
|
|
|
|
# test_data['data.1'] = pd.to_numeric(test_data['data.1'], errors='coerce')
|
|
|
|
# test_data.dropna(inplace=True)
|
|
|
|
|
|
|
|
# scaled_test_data = self.scaler.transform(test_data[['battery_voltage', 'battery_current', 'data.1', 'battery_soc']])
|
|
|
|
# test_data['scaled_soc'] = self.target_scaler.transform(test_data[['battery_soc']])
|
|
|
|
# test_data.dropna(inplace=True)
|
|
|
|
|
|
|
|
# X_test, _ = self._create_sequences(scaled_test_data, self.seq_length, self.n_future_steps)
|
|
|
|
# predictions = self.model.predict(X_test)
|
|
|
|
# predictions = self.target_scaler.inverse_transform(predictions.reshape(-1, 1)).reshape(-1, self.n_future_steps)
|
|
|
|
# return predictions
|
|
|
|
|
|
|
|
def predict_single(self, voltage_current_temp_soc_sequence):
|
|
|
|
|
|
|
|
if len(voltage_current_temp_soc_sequence) != self.seq_length or len(voltage_current_temp_soc_sequence[0]) != 3:
|
|
|
|
raise ValueError("Die Eingabesequenz muss die Form (seq_length, 3) haben.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
soc_gauss = self.gauss_model.predict(voltage_current_temp_soc_sequence)
|
|
|
|
soc_gauss = soc_gauss.reshape(-1,1)
|
|
|
|
#print(voltage_current_temp_soc_sequence.shape)
|
|
|
|
#print(soc_gauss.shape)
|
|
|
|
voltage_current_sequence = np.hstack([voltage_current_temp_soc_sequence, soc_gauss])
|
|
|
|
#print(voltage_current_sequence.shape)
|
|
|
|
print(voltage_current_sequence)
|
|
|
|
scaled_sequence = self.scaler.transform(voltage_current_sequence)
|
|
|
|
X = np.array([scaled_sequence])
|
|
|
|
|
|
|
|
prediction = self.model.predict(X)
|
|
|
|
prediction = self.target_scaler.inverse_transform(prediction.reshape(-1, 1)).reshape(-1, self.n_future_steps)
|
|
|
|
return prediction # Return the sequence of future SoC predictions
|
|
|
|
|
|
|
|
def save_model(self, model_path=None, scaler_path=None):
|
|
|
|
self.model.save(model_path)
|
|
|
|
|
|
|
|
scaler_params = {
|
|
|
|
'scaler_min_': self.scaler.min_.tolist(),
|
|
|
|
'scaler_scale_': self.scaler.scale_.tolist(),
|
|
|
|
'target_scaler_min_': self.target_scaler.min_.tolist(),
|
|
|
|
'target_scaler_scale_': self.target_scaler.scale_.tolist()
|
|
|
|
}
|
|
|
|
with open(scaler_path, 'w') as f:
|
|
|
|
json.dump(scaler_params, f)
|
|
|
|
|
|
|
|
def load_scalers(self, scaler_path):
|
|
|
|
with open(scaler_path, 'r') as f:
|
|
|
|
scaler_params = json.load(f)
|
|
|
|
self.scaler.min_ = np.array(scaler_params['scaler_min_'])
|
|
|
|
self.scaler.scale_ = np.array(scaler_params['scaler_scale_'])
|
|
|
|
self.target_scaler.min_ = np.array(scaler_params['target_scaler_min_'])
|
|
|
|
self.target_scaler.scale_ = np.array(scaler_params['target_scaler_scale_'])
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
train_data_path = 'lstm_train/raw_data_clean.csv'
|
|
|
|
test_data_path = 'Test_Data.csv'
|
|
|
|
model_path = 'battery_soc_predictor_lstm_model.keras'
|
|
|
|
scaler_path = 'battery_soc_predictor_scaler_model'
|
|
|
|
|
|
|
|
####################
|
|
|
|
# GAUSS + K-Means
|
|
|
|
####################
|
|
|
|
# Daten laden und vorbereiten
|
|
|
|
data_path = 'k_means.csv'
|
|
|
|
data = pd.read_csv(data_path, decimal='.')
|
|
|
|
data.dropna(inplace=True) # Entfernen von Zeilen mit NaN-Werten, die durch das Rolling entstehen
|
|
|
|
#print(data[["data","data.1"]].mean(axis=1))
|
|
|
|
data["temperature_mean"] = data[["data","data.1"]].mean(axis=1)
|
|
|
|
# Features und Zielvariable definieren
|
|
|
|
X = data[['battery_voltage', 'battery_current',"temperature_mean"]] #
|
|
|
|
y = data['battery_soc']
|
|
|
|
|
|
|
|
# Aufteilen der Daten in Trainings- und Testdatensätze
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
|
|
|
|
|
|
|
|
# # # Modell instanziieren und trainieren
|
|
|
|
#battery_model = BatterySocPredictorGauss()
|
|
|
|
#battery_model.fit(X_train, y_train)
|
|
|
|
#battery_model.save_model('battery_model.pkl')
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
battery_model = BatterySocPredictorGauss.load_model('battery_model.pkl')
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
# Vorhersagen auf den Testdaten
|
|
|
|
y_pred_test = battery_model.predict(X_test)
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
print(y_pred_test.shape, " ", y_test.shape)
|
|
|
|
# Berechnung des MAE und RMSE
|
|
|
|
mae = mean_absolute_error(y_test, y_pred_test)
|
|
|
|
rmse = mean_squared_error(y_test, y_pred_test, squared=False)
|
|
|
|
|
|
|
|
print(f'Mean Absolute Error (MAE): {mae}')
|
|
|
|
print(f'Root Mean Squared Error (RMSE): {rmse}')
|
|
|
|
|
|
|
|
# Plotten der tatsächlichen Werte vs. Vorhersagen
|
|
|
|
# plt.figure(figsize=(12, 6))
|
|
|
|
# plt.plot(y_test.values, label='Actual SoC')
|
|
|
|
# plt.plot(y_pred_test, label='Predicted SoC')
|
|
|
|
# plt.xlabel('Samples')
|
|
|
|
# plt.ylabel('State of Charge (SoC)')
|
|
|
|
# plt.title('Actual vs Predicted SoC')
|
|
|
|
# plt.legend()
|
|
|
|
# plt.show()
|
|
|
|
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
# # # Modell speichern
|
|
|
|
#battery_model.save_model('battery_model.pkl')
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
# Modell für Vorhersagen laden
|
|
|
|
#loaded_model = BatterySocPredictorGauss.load_model('battery_model.pkl')
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
####################
|
|
|
|
# LSTM
|
|
|
|
####################
|
|
|
|
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
predictor = BatterySoCPredictorLSTM(gauss='battery_model.pkl')
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
# # Training mit rekursiver Vorhersage
|
|
|
|
predictor.fit(train_data_path, epochs=50, batch_size=50, validation_split=0.1)
|
2024-05-01 10:02:16 +02:00
|
|
|
|
2024-07-30 09:22:55 +02:00
|
|
|
# # # Speichern des Modells und der Scaler
|
|
|
|
predictor.save_model(model_path=model_path, scaler_path=scaler_path)
|
|
|
|
|
|
|
|
# # # Laden des Modells und der Scaler
|
|
|
|
loaded_predictor = BatterySoCPredictorLSTM(model_path=model_path, scaler_path=scaler_path,gauss='battery_model.pkl')
|
|
|
|
|
|
|
|
test_data = pd.read_csv(test_data_path)
|
|
|
|
test_data['Time'] = pd.to_datetime(test_data['Time'], unit='ms')
|
|
|
|
test_data.set_index('Time', inplace=True)
|
|
|
|
test_data.replace('undefined', np.nan, inplace=True)
|
|
|
|
test_data.dropna(inplace=True)
|
|
|
|
test_data['battery_voltage'] = pd.to_numeric(test_data['battery_voltage'], errors='coerce')
|
|
|
|
test_data['battery_current'] = pd.to_numeric(test_data['battery_current'], errors='coerce')
|
|
|
|
test_data['battery_soc'] = pd.to_numeric(test_data['battery_soc'], errors='coerce')
|
|
|
|
test_data['data'] = pd.to_numeric(test_data['data.1'], errors='coerce')
|
|
|
|
test_data.dropna(inplace=True)
|
|
|
|
|
|
|
|
scaled_test_data = loaded_predictor.scaler.transform(test_data[['battery_voltage', 'battery_current', 'data', 'battery_soc']])
|
|
|
|
test_data['scaled_soc'] = loaded_predictor.target_scaler.transform(test_data[['battery_soc']])
|
|
|
|
test_data.dropna(inplace=True)
|
|
|
|
|
|
|
|
X_test, y_test = loaded_predictor._create_sequences(scaled_test_data, loaded_predictor.seq_length, loaded_predictor.n_future_steps)
|
|
|
|
predictions = loaded_predictor.model.predict(X_test)
|
|
|
|
predictions = loaded_predictor.target_scaler.inverse_transform(predictions.reshape(-1, 1)).reshape(-1, loaded_predictor.n_future_steps)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# print(test_data['battery_soc'].values[5:-5,...].shape)
|
|
|
|
# print(predictions[:,0].shape)
|
|
|
|
|
|
|
|
test_data_y = test_data['battery_soc'].values[5:-1,...]
|
|
|
|
mae = mean_absolute_error(test_data_y, predictions[:,0])
|
|
|
|
rmse = mean_squared_error(test_data_y, predictions[:,0], squared=False)
|
|
|
|
|
|
|
|
print(f'Mean Absolute Error (MAE): {mae}')
|
|
|
|
print(f'Root Mean Squared Error (RMSE): {rmse}')
|
|
|
|
|
|
|
|
plt.figure(figsize=(12, 6))
|
|
|
|
plt.plot(test_data_y, label='Actual SoC')
|
|
|
|
plt.plot(predictions[:,0].flatten(), label='Predicted SoC')
|
|
|
|
plt.xlabel('Samples')
|
|
|
|
plt.ylabel('State of Charge (SoC)')
|
|
|
|
plt.title('Actual vs Predicted SoC using LSTM')
|
|
|
|
plt.legend()
|
|
|
|
plt.show()
|