mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-11-21 04:46:31 +00:00
481 lines
21 KiB
Python
481 lines
21 KiB
Python
|
|
"""Genetic algorithm optimisation solution."""
|
|||
|
|
|
|||
|
|
from typing import Any, Optional
|
|||
|
|
|
|||
|
|
import pandas as pd
|
|||
|
|
from loguru import logger
|
|||
|
|
from pydantic import Field, field_validator
|
|||
|
|
|
|||
|
|
from akkudoktoreos.config.config import get_config
|
|||
|
|
from akkudoktoreos.core.emplan import (
|
|||
|
|
DDBCInstruction,
|
|||
|
|
EnergyManagementPlan,
|
|||
|
|
FRBCInstruction,
|
|||
|
|
)
|
|||
|
|
from akkudoktoreos.core.pydantic import PydanticDateTimeDataFrame
|
|||
|
|
from akkudoktoreos.devices.devicesabc import (
|
|||
|
|
ApplianceOperationMode,
|
|||
|
|
BatteryOperationMode,
|
|||
|
|
)
|
|||
|
|
from akkudoktoreos.devices.genetic.battery import Battery
|
|||
|
|
from akkudoktoreos.optimization.genetic.geneticdevices import GeneticParametersBaseModel
|
|||
|
|
from akkudoktoreos.optimization.optimization import OptimizationSolution
|
|||
|
|
from akkudoktoreos.prediction.prediction import get_prediction
|
|||
|
|
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
|||
|
|
from akkudoktoreos.utils.utils import NumpyEncoder
|
|||
|
|
|
|||
|
|
|
|||
|
|
class DeviceOptimizeResult(GeneticParametersBaseModel):
|
|||
|
|
device_id: str = Field(description="ID of device", examples=["device1"])
|
|||
|
|
hours: int = Field(gt=0, description="Number of hours in the simulation.", examples=[24])
|
|||
|
|
|
|||
|
|
|
|||
|
|
class ElectricVehicleResult(DeviceOptimizeResult):
|
|||
|
|
"""Result class containing information related to the electric vehicle's charging and discharging behavior."""
|
|||
|
|
|
|||
|
|
device_id: str = Field(description="ID of electric vehicle", examples=["ev1"])
|
|||
|
|
charge_array: list[float] = Field(
|
|||
|
|
description="Hourly charging status (0 for no charging, 1 for charging)."
|
|||
|
|
)
|
|||
|
|
discharge_array: list[int] = Field(
|
|||
|
|
description="Hourly discharging status (0 for no discharging, 1 for discharging)."
|
|||
|
|
)
|
|||
|
|
discharging_efficiency: float = Field(description="The discharge efficiency as a float..")
|
|||
|
|
capacity_wh: int = Field(description="Capacity of the EV’s battery in watt-hours.")
|
|||
|
|
charging_efficiency: float = Field(description="Charging efficiency as a float..")
|
|||
|
|
max_charge_power_w: int = Field(description="Maximum charging power in watts.")
|
|||
|
|
soc_wh: float = Field(
|
|||
|
|
description="State of charge of the battery in watt-hours at the start of the simulation."
|
|||
|
|
)
|
|||
|
|
initial_soc_percentage: int = Field(
|
|||
|
|
description="State of charge at the start of the simulation in percentage."
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
@field_validator("discharge_array", "charge_array", mode="before")
|
|||
|
|
def convert_numpy(cls, field: Any) -> Any:
|
|||
|
|
return NumpyEncoder.convert_numpy(field)[0]
|
|||
|
|
|
|||
|
|
|
|||
|
|
class GeneticSimulationResult(GeneticParametersBaseModel):
|
|||
|
|
"""This object contains the results of the simulation and provides insights into various parameters over the entire forecast period."""
|
|||
|
|
|
|||
|
|
Last_Wh_pro_Stunde: list[float] = Field(description="TBD")
|
|||
|
|
EAuto_SoC_pro_Stunde: list[float] = Field(
|
|||
|
|
description="The state of charge of the EV for each hour."
|
|||
|
|
)
|
|||
|
|
Einnahmen_Euro_pro_Stunde: list[float] = Field(
|
|||
|
|
description="The revenue from grid feed-in or other sources in euros per hour."
|
|||
|
|
)
|
|||
|
|
Gesamt_Verluste: float = Field(
|
|||
|
|
description="The total losses in watt-hours over the entire period."
|
|||
|
|
)
|
|||
|
|
Gesamtbilanz_Euro: float = Field(
|
|||
|
|
description="The total balance of revenues minus costs in euros."
|
|||
|
|
)
|
|||
|
|
Gesamteinnahmen_Euro: float = Field(description="The total revenues in euros.")
|
|||
|
|
Gesamtkosten_Euro: float = Field(description="The total costs in euros.")
|
|||
|
|
Home_appliance_wh_per_hour: list[Optional[float]] = Field(
|
|||
|
|
description="The energy consumption of a household appliance in watt-hours per hour."
|
|||
|
|
)
|
|||
|
|
Kosten_Euro_pro_Stunde: list[float] = Field(description="The costs in euros per hour.")
|
|||
|
|
Netzbezug_Wh_pro_Stunde: list[float] = Field(
|
|||
|
|
description="The grid energy drawn in watt-hours per hour."
|
|||
|
|
)
|
|||
|
|
Netzeinspeisung_Wh_pro_Stunde: list[float] = Field(
|
|||
|
|
description="The energy fed into the grid in watt-hours per hour."
|
|||
|
|
)
|
|||
|
|
Verluste_Pro_Stunde: list[float] = Field(description="The losses in watt-hours per hour.")
|
|||
|
|
akku_soc_pro_stunde: list[float] = Field(
|
|||
|
|
description="The state of charge of the battery (not the EV) in percentage per hour."
|
|||
|
|
)
|
|||
|
|
Electricity_price: list[float] = Field(
|
|||
|
|
description="Used Electricity Price, including predictions"
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
@field_validator(
|
|||
|
|
"Last_Wh_pro_Stunde",
|
|||
|
|
"Netzeinspeisung_Wh_pro_Stunde",
|
|||
|
|
"akku_soc_pro_stunde",
|
|||
|
|
"Netzbezug_Wh_pro_Stunde",
|
|||
|
|
"Kosten_Euro_pro_Stunde",
|
|||
|
|
"Einnahmen_Euro_pro_Stunde",
|
|||
|
|
"EAuto_SoC_pro_Stunde",
|
|||
|
|
"Verluste_Pro_Stunde",
|
|||
|
|
"Home_appliance_wh_per_hour",
|
|||
|
|
"Electricity_price",
|
|||
|
|
mode="before",
|
|||
|
|
)
|
|||
|
|
def convert_numpy(cls, field: Any) -> Any:
|
|||
|
|
return NumpyEncoder.convert_numpy(field)[0]
|
|||
|
|
|
|||
|
|
|
|||
|
|
class GeneticSolution(GeneticParametersBaseModel):
|
|||
|
|
"""**Note**: The first value of "Last_Wh_per_hour", "Netzeinspeisung_Wh_per_hour", and "Netzbezug_Wh_per_hour", will be set to null in the JSON output and represented as NaN or None in the corresponding classes' data returns. This approach is adopted to ensure that the current hour's processing remains unchanged."""
|
|||
|
|
|
|||
|
|
ac_charge: list[float] = Field(
|
|||
|
|
description="Array with AC charging values as relative power (0.0-1.0), other values set to 0."
|
|||
|
|
)
|
|||
|
|
dc_charge: list[float] = Field(
|
|||
|
|
description="Array with DC charging values as relative power (0-1), other values set to 0."
|
|||
|
|
)
|
|||
|
|
discharge_allowed: list[int] = Field(
|
|||
|
|
description="Array with discharge values (1 for discharge, 0 otherwise)."
|
|||
|
|
)
|
|||
|
|
eautocharge_hours_float: Optional[list[float]] = Field(description="TBD")
|
|||
|
|
result: GeneticSimulationResult
|
|||
|
|
eauto_obj: Optional[ElectricVehicleResult]
|
|||
|
|
start_solution: Optional[list[float]] = Field(
|
|||
|
|
default=None,
|
|||
|
|
description="An array of binary values (0 or 1) representing a possible starting solution for the simulation.",
|
|||
|
|
)
|
|||
|
|
washingstart: Optional[int] = Field(
|
|||
|
|
default=None,
|
|||
|
|
description="Can be `null` or contain an object representing the start of washing (if applicable).",
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
@field_validator(
|
|||
|
|
"ac_charge",
|
|||
|
|
"dc_charge",
|
|||
|
|
"discharge_allowed",
|
|||
|
|
mode="before",
|
|||
|
|
)
|
|||
|
|
def convert_numpy(cls, field: Any) -> Any:
|
|||
|
|
return NumpyEncoder.convert_numpy(field)[0]
|
|||
|
|
|
|||
|
|
@field_validator(
|
|||
|
|
"eauto_obj",
|
|||
|
|
mode="before",
|
|||
|
|
)
|
|||
|
|
def convert_eauto(cls, field: Any) -> Any:
|
|||
|
|
if isinstance(field, Battery):
|
|||
|
|
return ElectricVehicleResult(**field.to_dict())
|
|||
|
|
return field
|
|||
|
|
|
|||
|
|
def _battery_operation_from_solution(
|
|||
|
|
self,
|
|||
|
|
ac_charge: float,
|
|||
|
|
dc_charge: float,
|
|||
|
|
discharge_allowed: bool,
|
|||
|
|
) -> tuple[BatteryOperationMode, float]:
|
|||
|
|
"""Maps low-level solution to a representative operation mode and factor.
|
|||
|
|
|
|||
|
|
Args:
|
|||
|
|
ac_charge (float): Allowed AC-side charging power (relative units).
|
|||
|
|
dc_charge (float): Allowed DC-side charging power (relative units).
|
|||
|
|
discharge_allowed (bool): Whether discharging is permitted.
|
|||
|
|
|
|||
|
|
Returns:
|
|||
|
|
tuple[BatteryOperationMode, float]:
|
|||
|
|
A tuple containing:
|
|||
|
|
- `BatteryOperationMode`: the representative high-level operation mode.
|
|||
|
|
- `float`: the operation factor corresponding to the active signal.
|
|||
|
|
|
|||
|
|
Notes:
|
|||
|
|
- The mapping prioritizes AC charge > DC charge > discharge.
|
|||
|
|
- Multiple strategies can produce the same low-level signals; this function
|
|||
|
|
returns a representative mode based on a defined priority order.
|
|||
|
|
"""
|
|||
|
|
# (0,0,0) → Nothing allowed
|
|||
|
|
if ac_charge <= 0.0 and dc_charge <= 0.0 and not discharge_allowed:
|
|||
|
|
return BatteryOperationMode.IDLE, 1.0
|
|||
|
|
|
|||
|
|
# (0,0,1) → Discharge only
|
|||
|
|
if ac_charge <= 0.0 and dc_charge <= 0.0 and discharge_allowed:
|
|||
|
|
return BatteryOperationMode.PEAK_SHAVING, 1.0
|
|||
|
|
|
|||
|
|
# (ac>0,0,0) → AC charge only
|
|||
|
|
if ac_charge > 0.0 and dc_charge <= 0.0 and not discharge_allowed:
|
|||
|
|
return BatteryOperationMode.GRID_SUPPORT_IMPORT, ac_charge
|
|||
|
|
|
|||
|
|
# (0,dc>0,0) → DC charge only
|
|||
|
|
if ac_charge <= 0.0 and dc_charge > 0.0 and not discharge_allowed:
|
|||
|
|
return BatteryOperationMode.NON_EXPORT, dc_charge
|
|||
|
|
|
|||
|
|
# (ac>0,dc>0,0) → Both charge paths, no discharge
|
|||
|
|
if ac_charge > 0.0 and dc_charge > 0.0 and not discharge_allowed:
|
|||
|
|
return BatteryOperationMode.FORCED_CHARGE, ac_charge
|
|||
|
|
|
|||
|
|
# (ac>0,0,1) → AC charge + discharge - does not make sense
|
|||
|
|
if ac_charge > 0.0 and dc_charge <= 0.0 and discharge_allowed:
|
|||
|
|
raise ValueError(
|
|||
|
|
f"Illegal state: ac_charge: {ac_charge} and discharge_allowed: {discharge_allowed}"
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# (0,dc>0,1) → DC charge + discharge
|
|||
|
|
if ac_charge <= 0.0 and dc_charge > 0.0 and discharge_allowed:
|
|||
|
|
return BatteryOperationMode.SELF_CONSUMPTION, dc_charge
|
|||
|
|
|
|||
|
|
# (ac>0,dc>0,1) → Fully flexible - does not make sense
|
|||
|
|
if ac_charge > 0.0 and dc_charge > 0.0 and discharge_allowed:
|
|||
|
|
raise ValueError(
|
|||
|
|
f"Illegal state: ac_charge: {ac_charge} and discharge_allowed: {discharge_allowed}"
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# Fallback → safe idle
|
|||
|
|
return BatteryOperationMode.IDLE, 1.0
|
|||
|
|
|
|||
|
|
def optimization_solution(self) -> OptimizationSolution:
|
|||
|
|
"""Provide the genetic solution as a general optimization solution.
|
|||
|
|
|
|||
|
|
The battery modes are controlled by the grid control triggers:
|
|||
|
|
- ac_charge: charge from grid
|
|||
|
|
- discharge_allowed: discharge to grid
|
|||
|
|
|
|||
|
|
The following battery modes are supported:
|
|||
|
|
- SELF_CONSUMPTION: ac_charge == 0 and discharge_allowed == 0
|
|||
|
|
- GRID_SUPPORT_EXPORT: ac_charge == 0 and discharge_allowed == 1
|
|||
|
|
- GRID_SUPPORT_IMPORT: ac_charge > 0 and discharge_allowed == 0 or 1
|
|||
|
|
"""
|
|||
|
|
from akkudoktoreos.core.ems import get_ems
|
|||
|
|
|
|||
|
|
config = get_config()
|
|||
|
|
start_datetime = get_ems().start_datetime
|
|||
|
|
interval_hours = 1
|
|||
|
|
|
|||
|
|
# --- Create index based on list length and interval ---
|
|||
|
|
n_points = len(self.result.Kosten_Euro_pro_Stunde)
|
|||
|
|
time_index = pd.date_range(
|
|||
|
|
start=start_datetime,
|
|||
|
|
periods=n_points,
|
|||
|
|
freq=f"{interval_hours}h",
|
|||
|
|
)
|
|||
|
|
end_datetime = start_datetime.add(hours=n_points)
|
|||
|
|
|
|||
|
|
# Fill data into dataframe with correct column names
|
|||
|
|
# - load_energy_wh: Load of all energy consumers in wh"
|
|||
|
|
# - grid_energy_wh: Grid energy feed in (negative) or consumption (positive) in wh"
|
|||
|
|
# - pv_prediction_energy_wh: PV energy prediction (positive) in wh"
|
|||
|
|
# - elec_price_prediction_amt_kwh: Electricity price prediction in money per kwh"
|
|||
|
|
# - costs_amt: Costs in money amount"
|
|||
|
|
# - revenue_amt: Revenue in money amount"
|
|||
|
|
# - losses_energy_wh: Energy losses in wh"
|
|||
|
|
# - <device-id>_<operation>_op_mode: Operation mode of the device (1.0 when active)."
|
|||
|
|
# - <device-id>_<operation>_op_factor: Operation mode factor of the device."
|
|||
|
|
# - <device-id>_soc_factor: State of charge of a battery/ electric vehicle device as factor of total capacity."
|
|||
|
|
# - <device-id>_energy_wh: Energy consumption (positive) of a device in wh."
|
|||
|
|
|
|||
|
|
data = pd.DataFrame(
|
|||
|
|
{
|
|||
|
|
"date_time": time_index,
|
|||
|
|
"load_energy_wh": self.result.Last_Wh_pro_Stunde,
|
|||
|
|
"grid_feedin_energy_wh": self.result.Netzeinspeisung_Wh_pro_Stunde,
|
|||
|
|
"grid_consumption_energy_wh": self.result.Netzbezug_Wh_pro_Stunde,
|
|||
|
|
"elec_price_prediction_amt_kwh": [v * 1000 for v in self.result.Electricity_price],
|
|||
|
|
"costs_amt": self.result.Kosten_Euro_pro_Stunde,
|
|||
|
|
"revenue_amt": self.result.Einnahmen_Euro_pro_Stunde,
|
|||
|
|
"losses_energy_wh": self.result.Verluste_Pro_Stunde,
|
|||
|
|
},
|
|||
|
|
index=time_index,
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# Add battery data
|
|||
|
|
data["battery1_soc_factor"] = [v / 100 for v in self.result.akku_soc_pro_stunde]
|
|||
|
|
operation: dict[str, list[float]] = {}
|
|||
|
|
for hour, rate in enumerate(self.ac_charge):
|
|||
|
|
if hour >= n_points:
|
|||
|
|
break
|
|||
|
|
operation_mode, operation_mode_factor = self._battery_operation_from_solution(
|
|||
|
|
self.ac_charge[hour], self.dc_charge[hour], bool(self.discharge_allowed[hour])
|
|||
|
|
)
|
|||
|
|
for mode in BatteryOperationMode:
|
|||
|
|
mode_key = f"battery1_{mode.lower()}_op_mode"
|
|||
|
|
factor_key = f"battery1_{mode.lower()}_op_factor"
|
|||
|
|
if mode_key not in operation.keys():
|
|||
|
|
operation[mode_key] = []
|
|||
|
|
operation[factor_key] = []
|
|||
|
|
if mode == operation_mode:
|
|||
|
|
operation[mode_key].append(1.0)
|
|||
|
|
operation[factor_key].append(operation_mode_factor)
|
|||
|
|
else:
|
|||
|
|
operation[mode_key].append(0.0)
|
|||
|
|
operation[factor_key].append(0.0)
|
|||
|
|
for key in operation.keys():
|
|||
|
|
data[key] = operation[key]
|
|||
|
|
|
|||
|
|
# Add EV battery data
|
|||
|
|
if self.eauto_obj:
|
|||
|
|
if self.eautocharge_hours_float is None:
|
|||
|
|
# Electric vehicle is full enough. No load times.
|
|||
|
|
data[f"{self.eauto_obj.device_id}_soc_factor"] = [
|
|||
|
|
self.eauto_obj.initial_soc_percentage / 100.0
|
|||
|
|
] * n_points
|
|||
|
|
# operation modes
|
|||
|
|
operation_mode = BatteryOperationMode.IDLE
|
|||
|
|
for mode in BatteryOperationMode:
|
|||
|
|
mode_key = f"{self.eauto_obj.device_id}_{mode.lower()}_op_mode"
|
|||
|
|
factor_key = f"{self.eauto_obj.device_id}_{mode.lower()}_op_factor"
|
|||
|
|
if mode == operation_mode:
|
|||
|
|
data[mode_key] = [1.0] * n_points
|
|||
|
|
data[factor_key] = [1.0] * n_points
|
|||
|
|
else:
|
|||
|
|
data[mode_key] = [0.0] * n_points
|
|||
|
|
data[factor_key] = [0.0] * n_points
|
|||
|
|
else:
|
|||
|
|
data[f"{self.eauto_obj.device_id}_soc_factor"] = [
|
|||
|
|
v / 100 for v in self.result.EAuto_SoC_pro_Stunde
|
|||
|
|
]
|
|||
|
|
operation = {}
|
|||
|
|
for hour, rate in enumerate(self.eautocharge_hours_float):
|
|||
|
|
if hour >= n_points:
|
|||
|
|
break
|
|||
|
|
operation_mode, operation_mode_factor = self._battery_operation_from_solution(
|
|||
|
|
rate, 0.0, False
|
|||
|
|
)
|
|||
|
|
for mode in BatteryOperationMode:
|
|||
|
|
mode_key = f"{self.eauto_obj.device_id}_{mode.lower()}_op_mode"
|
|||
|
|
factor_key = f"{self.eauto_obj.device_id}_{mode.lower()}_op_factor"
|
|||
|
|
if mode_key not in operation.keys():
|
|||
|
|
operation[mode_key] = []
|
|||
|
|
operation[factor_key] = []
|
|||
|
|
if mode == operation_mode:
|
|||
|
|
operation[mode_key].append(1.0)
|
|||
|
|
operation[factor_key].append(operation_mode_factor)
|
|||
|
|
else:
|
|||
|
|
operation[mode_key].append(0.0)
|
|||
|
|
operation[factor_key].append(0.0)
|
|||
|
|
for key in operation.keys():
|
|||
|
|
data[key] = operation[key]
|
|||
|
|
|
|||
|
|
# Add home appliance data
|
|||
|
|
if self.washingstart:
|
|||
|
|
data["homeappliance1_energy_wh"] = self.result.Home_appliance_wh_per_hour
|
|||
|
|
|
|||
|
|
# Add important predictions that are not already available from the GenericSolution
|
|||
|
|
prediction = get_prediction()
|
|||
|
|
power_to_energy_per_interval_factor = 1.0
|
|||
|
|
if "pvforecast_ac_power" in prediction.record_keys:
|
|||
|
|
data["pv_prediction_energy_wh"] = (
|
|||
|
|
prediction.key_to_array(
|
|||
|
|
key="pvforecast_ac_power",
|
|||
|
|
start_datetime=start_datetime,
|
|||
|
|
end_datetime=end_datetime,
|
|||
|
|
interval=to_duration(f"{interval_hours} hours"),
|
|||
|
|
fill_method="linear",
|
|||
|
|
)
|
|||
|
|
* power_to_energy_per_interval_factor
|
|||
|
|
).tolist()
|
|||
|
|
if "weather_temp_air" in prediction.record_keys:
|
|||
|
|
data["weather_temp_air"] = (
|
|||
|
|
prediction.key_to_array(
|
|||
|
|
key="weather_temp_air",
|
|||
|
|
start_datetime=start_datetime,
|
|||
|
|
end_datetime=end_datetime,
|
|||
|
|
interval=to_duration(f"{interval_hours} hours"),
|
|||
|
|
fill_method="linear",
|
|||
|
|
)
|
|||
|
|
).tolist()
|
|||
|
|
|
|||
|
|
solution = OptimizationSolution(
|
|||
|
|
id=f"optimization-genetic@{to_datetime(as_string=True)}",
|
|||
|
|
generated_at=to_datetime(),
|
|||
|
|
comment="Optimization solution derived from GeneticSolution.",
|
|||
|
|
valid_from=start_datetime,
|
|||
|
|
valid_until=start_datetime.add(hours=config.optimization.horizon_hours),
|
|||
|
|
total_losses_energy_wh=self.result.Gesamt_Verluste,
|
|||
|
|
total_revenues_amt=self.result.Gesamteinnahmen_Euro,
|
|||
|
|
total_costs_amt=self.result.Gesamtkosten_Euro,
|
|||
|
|
data=PydanticDateTimeDataFrame.from_dataframe(data),
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
return solution
|
|||
|
|
|
|||
|
|
def energy_management_plan(self) -> EnergyManagementPlan:
|
|||
|
|
"""Provide the genetic solution as an energy management plan."""
|
|||
|
|
from akkudoktoreos.core.ems import get_ems
|
|||
|
|
|
|||
|
|
start_datetime = get_ems().start_datetime
|
|||
|
|
plan = EnergyManagementPlan(
|
|||
|
|
id=f"plan-genetic@{to_datetime(as_string=True)}",
|
|||
|
|
generated_at=to_datetime(),
|
|||
|
|
instructions=[],
|
|||
|
|
comment="Energy management plan derived from GeneticSolution.",
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# Add battery instructions (fill rate based control)
|
|||
|
|
last_operation_mode: Optional[str] = None
|
|||
|
|
last_operation_mode_factor: Optional[float] = None
|
|||
|
|
resource_id = "battery1"
|
|||
|
|
logger.debug("BAT: {} - {}", resource_id, self.ac_charge)
|
|||
|
|
for hour, rate in enumerate(self.ac_charge):
|
|||
|
|
operation_mode, operation_mode_factor = self._battery_operation_from_solution(
|
|||
|
|
self.ac_charge[hour], self.dc_charge[hour], bool(self.discharge_allowed[hour])
|
|||
|
|
)
|
|||
|
|
if (
|
|||
|
|
operation_mode == last_operation_mode
|
|||
|
|
and operation_mode_factor == last_operation_mode_factor
|
|||
|
|
):
|
|||
|
|
# Skip, we already added the instruction
|
|||
|
|
continue
|
|||
|
|
last_operation_mode = operation_mode
|
|||
|
|
last_operation_mode_factor = operation_mode_factor
|
|||
|
|
execution_time = start_datetime.add(hours=hour)
|
|||
|
|
plan.add_instruction(
|
|||
|
|
FRBCInstruction(
|
|||
|
|
resource_id=resource_id,
|
|||
|
|
execution_time=execution_time,
|
|||
|
|
actuator_id=resource_id,
|
|||
|
|
operation_mode_id=operation_mode,
|
|||
|
|
operation_mode_factor=operation_mode_factor,
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# Add EV battery instructions (fill rate based control)
|
|||
|
|
if self.eauto_obj:
|
|||
|
|
resource_id = self.eauto_obj.device_id
|
|||
|
|
if self.eautocharge_hours_float is None:
|
|||
|
|
# Electric vehicle is full enough. No load times.
|
|||
|
|
logger.debug("EV: {} - SoC >= min, no optimization", resource_id)
|
|||
|
|
plan.add_instruction(
|
|||
|
|
FRBCInstruction(
|
|||
|
|
resource_id=resource_id,
|
|||
|
|
execution_time=start_datetime,
|
|||
|
|
actuator_id=resource_id,
|
|||
|
|
operation_mode_id=BatteryOperationMode.IDLE,
|
|||
|
|
operation_mode_factor=1.0,
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
else:
|
|||
|
|
last_operation_mode = None
|
|||
|
|
last_operation_mode_factor = None
|
|||
|
|
logger.debug("EV: {} - {}", resource_id, self.eauto_obj.charge_array)
|
|||
|
|
for hour, rate in enumerate(self.eautocharge_hours_float):
|
|||
|
|
operation_mode, operation_mode_factor = self._battery_operation_from_solution(
|
|||
|
|
rate, 0.0, False
|
|||
|
|
)
|
|||
|
|
if (
|
|||
|
|
operation_mode == last_operation_mode
|
|||
|
|
and operation_mode_factor == last_operation_mode_factor
|
|||
|
|
):
|
|||
|
|
# Skip, we already added the instruction
|
|||
|
|
continue
|
|||
|
|
last_operation_mode = operation_mode
|
|||
|
|
last_operation_mode_factor = operation_mode_factor
|
|||
|
|
execution_time = start_datetime.add(hours=hour)
|
|||
|
|
plan.add_instruction(
|
|||
|
|
FRBCInstruction(
|
|||
|
|
resource_id=resource_id,
|
|||
|
|
execution_time=execution_time,
|
|||
|
|
actuator_id=resource_id,
|
|||
|
|
operation_mode_id=operation_mode,
|
|||
|
|
operation_mode_factor=operation_mode_factor,
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# Add home appliance instructions (demand driven based control)
|
|||
|
|
if self.washingstart:
|
|||
|
|
resource_id = "homeappliance1"
|
|||
|
|
operation_mode = ApplianceOperationMode.RUN # type: ignore[assignment]
|
|||
|
|
operation_mode_factor = 1.0
|
|||
|
|
execution_time = start_datetime.add(hours=self.washingstart)
|
|||
|
|
plan.add_instruction(
|
|||
|
|
DDBCInstruction(
|
|||
|
|
resource_id=resource_id,
|
|||
|
|
execution_time=execution_time,
|
|||
|
|
actuator_id=resource_id,
|
|||
|
|
operation_mode_id=operation_mode,
|
|||
|
|
operation_mode_factor=operation_mode_factor,
|
|||
|
|
)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
return plan
|