EOSdash: Improve PV forecast configuration. (#500)

* Allow to configure planes and configuration values of planes separatedly.

Make single configuration values for planes explicitly available for configuration.
Still allows to also configure a plane by a whole plane value struct.

* Enhance admin page by file import and export of the EOS configuration

The actual EOS configuration can now be exported to the EOSdash server.
From there it can be also imported. For security reasons only import and export
from/ to a predefined directory on the EOSdash server is possible.

* Improve handling of nested value pathes in pydantic models.

Added separate methods for nested path access (get_nested_value, set_nested_value).
On value setting the missing fields along the nested path are now added automatically
and initialized with default values. Nested path access was before restricted to the
EOS configuration and is now part of the pydantic base model.

* Makefile

Add new target to run rests as CI does on Github. Improve target docs.

* Datetimeutil tests

Prolong acceptable time difference for comparison of approximately equal times in tests.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2025-04-05 13:08:12 +02:00
committed by GitHub
parent e6a8c0508e
commit 0bda5ba4cc
15 changed files with 1216 additions and 257 deletions

View File

@@ -15,7 +15,7 @@ Key Features:
import json
import re
from copy import deepcopy
from typing import Any, Dict, List, Optional, Type, Union
from typing import Any, Dict, List, Optional, Type, Union, get_args, get_origin
from zoneinfo import ZoneInfo
import pandas as pd
@@ -51,70 +51,6 @@ def merge_models(source: BaseModel, update_dict: dict[str, Any]) -> dict[str, An
return merged_dict
def access_nested_value(
model: BaseModel, path: str, setter: bool, value: Optional[Any] = None
) -> Any:
"""Get or set a nested model value based on the provided path.
Supports string paths (with '/' separators) or sequence paths (list/tuple).
Trims leading and trailing '/' from string paths.
Args:
model (BaseModel): The model object for partial assignment.
path (str): The path to the model key (e.g., "key1/key2/key3" or key1/key2/0).
setter (bool): True to set value at path, False to return value at path.
value (Optional[Any]): The value to set.
Returns:
Any: The retrieved value if acting as a getter, or None if setting a value.
"""
path_elements = path.strip("/").split("/")
cfg: Any = model
parent: BaseModel = model
model_key: str = ""
for i, key in enumerate(path_elements):
is_final_key = i == len(path_elements) - 1
if isinstance(cfg, list):
try:
idx = int(key)
if is_final_key:
if not setter: # Getter
return cfg[idx]
else: # Setter
new_list = list(cfg)
new_list[idx] = value
# Trigger validation
setattr(parent, model_key, new_list)
else:
cfg = cfg[idx]
except ValidationError as e:
raise ValueError(f"Error updating model: {e}") from e
except (ValueError, IndexError) as e:
raise IndexError(f"Invalid list index at {path}: {key}") from e
elif isinstance(cfg, BaseModel):
parent = cfg
model_key = key
if is_final_key:
if not setter: # Getter
return getattr(cfg, key)
else: # Setter
try:
# Verification also if nested value is provided opposed to just setattr
# Will merge partial assignment
cfg = cfg.__pydantic_validator__.validate_assignment(cfg, key, value)
except Exception as e:
raise ValueError(f"Error updating model: {e}") from e
else:
cfg = getattr(cfg, key)
else:
raise KeyError(f"Key '{key}' not found in model.")
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
"""Custom type adapter for Pendulum DateTime fields."""
@@ -146,7 +82,333 @@ class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
return bool(re.match(iso8601_pattern, value))
class PydanticBaseModel(BaseModel):
class PydanticModelNestedValueMixin:
"""A mixin providing methods to get and set nested values within a Pydantic model.
The methods use a '/'-separated path to denote the nested values.
Supports handling `Optional`, `List`, and `Dict` types, ensuring correct initialization of
missing attributes.
"""
def get_nested_value(self, path: str) -> Any:
"""Retrieve a nested value from the model using a '/'-separated path.
Supports accessing nested attributes and list indices.
Args:
path (str): A '/'-separated path to the nested attribute (e.g., "key1/key2/0").
Returns:
Any: The retrieved value.
Raises:
KeyError: If a key is not found in the model.
IndexError: If a list index is out of bounds or invalid.
Example:
```python
class Address(PydanticBaseModel):
city: str
class User(PydanticBaseModel):
name: str
address: Address
user = User(name="Alice", address=Address(city="New York"))
city = user.get_nested_value("address/city")
print(city) # Output: "New York"
```
"""
path_elements = path.strip("/").split("/")
model: Any = self
for key in path_elements:
if isinstance(model, list):
try:
model = model[int(key)]
except (ValueError, IndexError) as e:
raise IndexError(f"Invalid list index at '{path}': {key}; {e}")
elif isinstance(model, BaseModel):
model = getattr(model, key)
else:
raise KeyError(f"Key '{key}' not found in model.")
return model
def set_nested_value(self, path: str, value: Any) -> None:
"""Set a nested value in the model using a '/'-separated path.
Supports modifying nested attributes and list indices while preserving Pydantic validation.
Automatically initializes missing `Optional`, `Union`, `dict`, and `list` fields if necessary.
If a missing field cannot be initialized, raises an exception.
Args:
path (str): A '/'-separated path to the nested attribute (e.g., "key1/key2/0").
value (Any): The new value to set.
Raises:
KeyError: If a key is not found in the model.
IndexError: If a list index is out of bounds or invalid.
ValueError: If a validation error occurs.
TypeError: If a missing field cannot be initialized.
Example:
```python
class Address(PydanticBaseModel):
city: Optional[str]
class User(PydanticBaseModel):
name: str
address: Optional[Address]
settings: Optional[Dict[str, Any]]
user = User(name="Alice", address=None, settings=None)
user.set_nested_value("address/city", "Los Angeles")
user.set_nested_value("settings/theme", "dark")
print(user.address.city) # Output: "Los Angeles"
print(user.settings) # Output: {'theme': 'dark'}
```
"""
path_elements = path.strip("/").split("/")
# The model we are currently working on
model: Any = self
# The model we get the type information from. It is a pydantic BaseModel
parent: BaseModel = model
# The field that provides type information for the current key
# Fields may have nested types that translates to a sequence of keys, not just one
# - my_field: Optional[list[OtherModel]] -> e.g. "myfield/0" for index 0
# parent_key = ["myfield",] ... ["myfield", "0"]
# parent_key_types = [list, OtherModel]
parent_key: list[str] = []
parent_key_types: list = []
for i, key in enumerate(path_elements):
is_final_key = i == len(path_elements) - 1
# Add current key to parent key to enable nested type tracking
parent_key.append(key)
# Get next value
next_value = None
if isinstance(model, BaseModel):
# If this is the final key, set the value
if is_final_key:
try:
model.__pydantic_validator__.validate_assignment(model, key, value)
except ValidationError as e:
raise ValueError(f"Error updating model: {e}") from e
return
# Track parent and key for possible assignment later
parent = model
parent_key = [
key,
]
parent_key_types = self._get_key_types(model, key)
# Attempt to access the next attribute, handling None values
next_value = getattr(model, key, None)
# Handle missing values (initialize dict/list/model if necessary)
if next_value is None:
next_type = parent_key_types[len(parent_key) - 1]
next_value = self._initialize_value(next_type)
if next_value is None:
raise TypeError(
f"Unable to initialize missing value for key '{key}' in path '{path}' with type {next_type} of {parent_key}:{parent_key_types}."
)
setattr(parent, key, next_value)
# pydantic may copy on validation assignment - reread to get the copied model
next_value = getattr(model, key, None)
elif isinstance(model, list):
# Handle lists (ensure index exists and modify safely)
try:
idx = int(key)
except Exception as e:
raise IndexError(
f"Invalid list index '{key}' at '{path}': key = {key}; parent = {parent}, parent_key = {parent_key}; model = {model}; {e}"
)
# Get next type from parent key type information
next_type = parent_key_types[len(parent_key) - 1]
if len(model) > idx:
next_value = model[idx]
else:
# Extend the list with default values if index is out of range
while len(model) <= idx:
next_value = self._initialize_value(next_type)
if next_value is None:
raise TypeError(
f"Unable to initialize missing value for key '{key}' in path '{path}' with type {next_type} of {parent_key}:{parent_key_types}."
)
model.append(next_value)
if is_final_key:
if (
(isinstance(next_type, type) and not isinstance(value, next_type))
or (next_type is dict and not isinstance(value, dict))
or (next_type is list and not isinstance(value, list))
):
raise TypeError(
f"Expected type {next_type} for key '{key}' in path '{path}', but got {type(value)}: {value}"
)
model[idx] = value
return
elif isinstance(model, dict):
# Handle dictionaries (auto-create missing keys)
# Get next type from parent key type information
next_type = parent_key_types[len(parent_key) - 1]
if is_final_key:
if (
(isinstance(next_type, type) and not isinstance(value, next_type))
or (next_type is dict and not isinstance(value, dict))
or (next_type is list and not isinstance(value, list))
):
raise TypeError(
f"Expected type {next_type} for key '{key}' in path '{path}', but got {type(value)}: {value}"
)
model[key] = value
return
if key not in model:
next_value = self._initialize_value(next_type)
if next_value is None:
raise TypeError(
f"Unable to initialize missing value for key '{key}' in path '{path}' with type {next_type} of {parent_key}:{parent_key_types}."
)
model[key] = next_value
else:
next_value = model[key]
else:
raise KeyError(f"Key '{key}' not found in model.")
# Move deeper
model = next_value
@staticmethod
def _get_key_types(model: Type[BaseModel], key: str) -> List[Union[Type[Any], list, dict]]:
"""Returns a list of nested types for a given Pydantic model key.
- Skips `Optional` and `Union`, using only the first non-None type.
- Skips dictionary keys and only adds value types.
- Keeps `list` and `dict` as origins.
Args:
model (Type[BaseModel]): The Pydantic model class to inspect.
key (str): The attribute name in the model.
Returns:
List[Union[Type[Any], list, dict]]: A list of extracted types, preserving `list` and `dict` origins.
Raises:
TypeError: If the key does not exist or lacks a valid type annotation.
"""
if key not in model.model_fields:
raise TypeError(f"Field '{key}' does not exist in model '{model.__name__}'.")
field_annotation = model.model_fields[key].annotation
if not field_annotation:
raise TypeError(
f"Missing type annotation for field '{key}' in model '{model.__name__}'."
)
nested_types: list[Union[Type[Any], list, dict]] = []
queue: list[Any] = [field_annotation]
while queue:
annotation = queue.pop(0)
origin = get_origin(annotation)
args = get_args(annotation)
# Handle Union (Optional[X] is treated as Union[X, None])
if origin is Union:
queue.extend(arg for arg in args if arg is not type(None))
continue
# Handle lists and dictionaries
if origin is list:
nested_types.append(list)
if args:
queue.append(args[0]) # Extract value type for list[T]
continue
if origin is dict:
nested_types.append(dict)
if len(args) == 2:
queue.append(args[1]) # Extract only the value type for dict[K, V]
continue
# If it's a BaseModel, add it to the list
if isinstance(annotation, type) and issubclass(annotation, BaseModel):
nested_types.append(annotation)
continue
# Otherwise, it's a standard type (e.g., str, int, bool, float, etc.)
nested_types.append(annotation)
return nested_types
@staticmethod
def _initialize_value(type_hint: Type[Any] | None | list[Any] | dict[Any, Any]) -> Any:
"""Initialize a missing value based on the provided type hint.
Args:
type_hint (Type[Any] | None | list[Any] | dict[Any, Any]): The type hint that determines
how the missing value should be initialized.
Returns:
Any: An instance of the expected type (e.g., list, dict, or Pydantic model), or `None`
if initialization is not possible.
Raises:
TypeError: If instantiation fails.
Example:
- For `list[str]`, returns `[]`
- For `dict[str, Any]`, returns `{}`
- For `Address` (a Pydantic model), returns a new `Address()` instance.
"""
if type_hint is None:
return None
# Handle direct instances of list or dict
if isinstance(type_hint, list):
return []
if isinstance(type_hint, dict):
return {}
origin = get_origin(type_hint)
# Handle generic list and dictionary
if origin is list:
return []
if origin is dict:
return {}
# Handle Pydantic models
if isinstance(type_hint, type) and issubclass(type_hint, BaseModel):
try:
return type_hint.model_construct()
except Exception as e:
raise TypeError(f"Failed to initialize model '{type_hint.__name__}': {e}")
# Handle standard built-in types (int, float, str, bool, etc.)
if isinstance(type_hint, type):
try:
return type_hint()
except Exception as e:
raise TypeError(f"Failed to initialize instance of '{type_hint.__name__}': {e}")
raise TypeError(f"Unsupported type hint '{type_hint}' for initialization.")
class PydanticBaseModel(BaseModel, PydanticModelNestedValueMixin):
"""Base model class with automatic serialization and deserialization of `pendulum.DateTime` fields.
This model serializes pendulum.DateTime objects to ISO 8601 strings and