mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-08-25 06:52:23 +00:00
Initial readthedocs config (#339)
* Add links to documentation. * Drop unused file class_soc_calc.
This commit is contained in:
committed by
GitHub
parent
214768795f
commit
10acc705ec
@@ -1,340 +0,0 @@
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
import mariadb
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class BatteryDataProcessor:
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
voltage_high_threshold,
|
||||
voltage_low_threshold,
|
||||
current_low_threshold,
|
||||
gap,
|
||||
battery_capacity_ah,
|
||||
):
|
||||
self.config = config
|
||||
self.voltage_high_threshold = voltage_high_threshold
|
||||
self.voltage_low_threshold = voltage_low_threshold
|
||||
self.current_low_threshold = current_low_threshold
|
||||
self.gap = gap
|
||||
self.battery_capacity_ah = battery_capacity_ah
|
||||
self.conn = None
|
||||
self.data = None
|
||||
|
||||
def connect_db(self):
|
||||
self.conn = mariadb.connect(**self.config)
|
||||
self.cursor = self.conn.cursor()
|
||||
|
||||
def disconnect_db(self):
|
||||
if self.conn:
|
||||
self.cursor.close()
|
||||
self.conn.close()
|
||||
|
||||
def fetch_data(self, start_time):
|
||||
query = """
|
||||
SELECT timestamp, data, topic
|
||||
FROM pip
|
||||
WHERE timestamp >= %s AND (topic = 'battery_current' OR topic = 'battery_voltage')
|
||||
ORDER BY timestamp
|
||||
"""
|
||||
self.cursor.execute(query, (start_time,))
|
||||
rows = self.cursor.fetchall()
|
||||
self.data = pd.DataFrame(rows, columns=["timestamp", "data", "topic"])
|
||||
self.data["timestamp"] = pd.to_datetime(self.data["timestamp"])
|
||||
self.data["data"] = self.data["data"].astype(float)
|
||||
|
||||
def process_data(self):
|
||||
self.data.drop_duplicates(subset=["timestamp", "topic"], inplace=True)
|
||||
|
||||
data_pivot = self.data.pivot(index="timestamp", columns="topic", values="data")
|
||||
data_pivot = data_pivot.resample("1T").mean().interpolate()
|
||||
data_pivot.columns.name = None
|
||||
data_pivot.reset_index(inplace=True)
|
||||
self.data = data_pivot
|
||||
|
||||
def group_points(self, df):
|
||||
df = df.sort_values("timestamp")
|
||||
groups = []
|
||||
group = []
|
||||
last_time = None
|
||||
|
||||
for _, row in df.iterrows():
|
||||
if last_time is None or (row["timestamp"] - last_time) <= pd.Timedelta(
|
||||
minutes=self.gap
|
||||
):
|
||||
group.append(row)
|
||||
else:
|
||||
groups.append(group)
|
||||
group = [row]
|
||||
last_time = row["timestamp"]
|
||||
|
||||
if group:
|
||||
groups.append(group)
|
||||
|
||||
last_points = [group[-1] for group in groups]
|
||||
return last_points
|
||||
|
||||
def find_soc_points(self):
|
||||
condition_soc_100 = (self.data["battery_voltage"] >= self.voltage_high_threshold) & (
|
||||
self.data["battery_current"].abs() <= self.current_low_threshold
|
||||
)
|
||||
condition_soc_0 = (self.data["battery_voltage"] <= self.voltage_low_threshold) & (
|
||||
self.data["battery_current"].abs() <= self.current_low_threshold
|
||||
)
|
||||
|
||||
times_soc_100_all = self.data[condition_soc_100][
|
||||
["timestamp", "battery_voltage", "battery_current"]
|
||||
]
|
||||
times_soc_0_all = self.data[condition_soc_0][
|
||||
["timestamp", "battery_voltage", "battery_current"]
|
||||
]
|
||||
|
||||
last_points_100 = self.group_points(times_soc_100_all)
|
||||
last_points_0 = self.group_points(times_soc_0_all)
|
||||
|
||||
last_points_100_df = pd.DataFrame(last_points_100)
|
||||
last_points_0_df = pd.DataFrame(last_points_0)
|
||||
|
||||
return last_points_100_df, last_points_0_df
|
||||
|
||||
def calculate_resetting_soc(self, last_points_100_df, last_points_0_df):
|
||||
soc_values = []
|
||||
integration_results = []
|
||||
reset_points = pd.concat([last_points_100_df, last_points_0_df]).sort_values("timestamp")
|
||||
|
||||
# Initialisieren der SoC-Liste
|
||||
self.data["calculated_soc"] = np.nan
|
||||
|
||||
for i in range(len(reset_points)):
|
||||
start_point = reset_points.iloc[i]
|
||||
if i < len(reset_points) - 1:
|
||||
end_point = reset_points.iloc[i + 1]
|
||||
else:
|
||||
end_point = self.data.iloc[-1] # Verwenden des letzten Datensatzes als Endpunkt
|
||||
|
||||
if (
|
||||
not last_points_100_df.empty
|
||||
and start_point["timestamp"] in last_points_100_df["timestamp"].values
|
||||
):
|
||||
initial_soc = 100
|
||||
elif start_point["timestamp"] in last_points_0_df["timestamp"].values:
|
||||
initial_soc = 0
|
||||
|
||||
cut_data = self.data[
|
||||
(self.data["timestamp"] >= start_point["timestamp"])
|
||||
& (self.data["timestamp"] <= end_point["timestamp"])
|
||||
].copy()
|
||||
cut_data["time_diff_hours"] = cut_data["timestamp"].diff().dt.total_seconds() / 3600
|
||||
cut_data.dropna(subset=["time_diff_hours"], inplace=True)
|
||||
|
||||
calculated_soc = initial_soc
|
||||
calculated_soc_list = [calculated_soc]
|
||||
integrated_current = 0
|
||||
|
||||
for j in range(1, len(cut_data)):
|
||||
current = cut_data.iloc[j]["battery_current"]
|
||||
delta_t = cut_data.iloc[j]["time_diff_hours"]
|
||||
delta_soc = (
|
||||
(current * delta_t) / self.battery_capacity_ah * 100
|
||||
) # Convert to percentage
|
||||
|
||||
calculated_soc += delta_soc
|
||||
calculated_soc = min(max(calculated_soc, 0), 100) # Clip to 0-100%
|
||||
calculated_soc_list.append(calculated_soc)
|
||||
|
||||
# Integration des Stroms aufaddieren
|
||||
integrated_current += current * delta_t
|
||||
|
||||
cut_data["calculated_soc"] = calculated_soc_list
|
||||
soc_values.append(cut_data[["timestamp", "calculated_soc"]])
|
||||
|
||||
integration_results.append(
|
||||
{
|
||||
"start_time": start_point["timestamp"],
|
||||
"end_time": end_point["timestamp"],
|
||||
"integrated_current": integrated_current,
|
||||
"start_soc": initial_soc,
|
||||
"end_soc": calculated_soc_list[-1],
|
||||
}
|
||||
)
|
||||
print(integration_results)
|
||||
soc_df = pd.concat(soc_values).drop_duplicates(subset=["timestamp"]).reset_index(drop=True)
|
||||
return soc_df, integration_results
|
||||
|
||||
def calculate_soh(self, integration_results):
|
||||
soh_values = []
|
||||
|
||||
for result in integration_results:
|
||||
delta_soc = abs(result["start_soc"] - result["end_soc"]) # Use the actual change in SoC
|
||||
if delta_soc > 0: # Avoid division by zero
|
||||
effective_capacity_ah = result["integrated_current"]
|
||||
soh = (effective_capacity_ah / self.battery_capacity_ah) * 100
|
||||
soh_values.append({"timestamp": result["end_time"], "soh": soh})
|
||||
|
||||
soh_df = pd.DataFrame(soh_values)
|
||||
return soh_df
|
||||
|
||||
def delete_existing_soc_entries(self, soc_df):
|
||||
delete_query = """
|
||||
DELETE FROM pip
|
||||
WHERE timestamp = %s AND topic = 'calculated_soc'
|
||||
"""
|
||||
timestamps = [
|
||||
(row["timestamp"].strftime("%Y-%m-%d %H:%M:%S"),)
|
||||
for _, row in soc_df.iterrows()
|
||||
if pd.notna(row["timestamp"])
|
||||
]
|
||||
|
||||
self.cursor.executemany(delete_query, timestamps)
|
||||
self.conn.commit()
|
||||
|
||||
def update_database_with_soc(self, soc_df):
|
||||
# Löschen der vorhandenen Einträge mit demselben Topic und Datum
|
||||
self.delete_existing_soc_entries(soc_df)
|
||||
|
||||
# Resample `soc_df` auf 5-Minuten-Intervalle und berechnen des Mittelwerts
|
||||
soc_df.set_index("timestamp", inplace=True)
|
||||
soc_df_resampled = soc_df.resample("5T").mean().dropna().reset_index()
|
||||
# soc_df_resampled['timestamp'] = soc_df_resampled['timestamp'].apply(lambda x: x.strftime('%Y-%m-%d %H:%M:%S'))
|
||||
print(soc_df_resampled)
|
||||
|
||||
# Einfügen der berechneten SoC-Werte in die Datenbank
|
||||
insert_query = """
|
||||
INSERT INTO pip (timestamp, data, topic)
|
||||
VALUES (%s, %s, 'calculated_soc')
|
||||
"""
|
||||
for _, row in soc_df_resampled.iterrows():
|
||||
print(row)
|
||||
print(row["timestamp"])
|
||||
record = (
|
||||
row["timestamp"].strftime("%Y-%m-%d %H:%M:%S"),
|
||||
row["calculated_soc"],
|
||||
)
|
||||
try:
|
||||
self.cursor.execute(insert_query, record)
|
||||
except mariadb.OperationalError as e:
|
||||
print(f"Error inserting record {record}: {e}")
|
||||
|
||||
self.conn.commit()
|
||||
|
||||
def plot_data(self, last_points_100_df, last_points_0_df, soc_df):
|
||||
plt.figure(figsize=(14, 10))
|
||||
|
||||
plt.subplot(4, 1, 1)
|
||||
plt.plot(
|
||||
self.data["timestamp"],
|
||||
self.data["battery_voltage"],
|
||||
label="Battery Voltage",
|
||||
color="blue",
|
||||
)
|
||||
if not last_points_100_df.empty:
|
||||
plt.scatter(
|
||||
last_points_100_df["timestamp"],
|
||||
last_points_100_df["battery_voltage"],
|
||||
color="green",
|
||||
marker="o",
|
||||
label="100% SoC Points",
|
||||
)
|
||||
plt.scatter(
|
||||
last_points_0_df["timestamp"],
|
||||
last_points_0_df["battery_voltage"],
|
||||
color="red",
|
||||
marker="x",
|
||||
label="0% SoC Points",
|
||||
)
|
||||
plt.xlabel("Timestamp")
|
||||
plt.ylabel("Voltage (V)")
|
||||
plt.legend()
|
||||
plt.title("Battery Voltage over Time")
|
||||
|
||||
plt.subplot(4, 1, 2)
|
||||
plt.plot(
|
||||
self.data["timestamp"],
|
||||
self.data["battery_current"],
|
||||
label="Battery Current",
|
||||
color="orange",
|
||||
)
|
||||
if not last_points_100_df.empty:
|
||||
plt.scatter(
|
||||
last_points_100_df["timestamp"],
|
||||
last_points_100_df["battery_current"],
|
||||
color="green",
|
||||
marker="o",
|
||||
label="100% SoC Points",
|
||||
)
|
||||
plt.scatter(
|
||||
last_points_0_df["timestamp"],
|
||||
last_points_0_df["battery_current"],
|
||||
color="red",
|
||||
marker="x",
|
||||
label="0% SoC Points",
|
||||
)
|
||||
plt.xlabel("Timestamp")
|
||||
plt.ylabel("Current (A)")
|
||||
plt.legend()
|
||||
plt.title("Battery Current over Time")
|
||||
|
||||
plt.subplot(4, 1, 3)
|
||||
plt.plot(soc_df["timestamp"], soc_df["calculated_soc"], label="SoC", color="purple")
|
||||
plt.xlabel("Timestamp")
|
||||
plt.ylabel("SoC (%)")
|
||||
plt.legend()
|
||||
plt.title("State of Charge (SoC) over Time")
|
||||
|
||||
# plt.subplot(4, 1, 4)
|
||||
# plt.plot(soh_df['timestamp'], soh_df['soh'], label='SoH', color='brown')
|
||||
# plt.xlabel('Timestamp')
|
||||
# plt.ylabel('SoH (%)')
|
||||
# plt.legend()
|
||||
# plt.title('State of Health (SoH) over Time')
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# MariaDB Verbindungsdetails
|
||||
|
||||
config = {
|
||||
"user": "soc",
|
||||
"password": "Rayoflight123!",
|
||||
"host": "192.168.1.135",
|
||||
"database": "sensor",
|
||||
}
|
||||
|
||||
# Parameter festlegen
|
||||
voltage_high_threshold = 55.4 # 100% SoC
|
||||
voltage_low_threshold = 48 # 0% SoC
|
||||
current_low_threshold = 2 # Niedriger Strom für beide Zustände
|
||||
gap = 30 # Zeitlücke in Minuten zum Gruppieren von Maxima/Minima
|
||||
bat_capacity = 0.8 * 33 * 1000 / 48
|
||||
|
||||
# Zeitpunkt X definieren
|
||||
zeitpunkt_x = (datetime.now() - timedelta(weeks=4)).strftime("%Y-%m-%d %H:%M:%S")
|
||||
|
||||
# BatteryDataProcessor instanziieren und verwenden
|
||||
processor = BatteryDataProcessor(
|
||||
config,
|
||||
voltage_high_threshold,
|
||||
voltage_low_threshold,
|
||||
current_low_threshold,
|
||||
gap,
|
||||
bat_capacity,
|
||||
)
|
||||
processor.connect_db()
|
||||
processor.fetch_data(zeitpunkt_x)
|
||||
processor.process_data()
|
||||
last_points_100_df, last_points_0_df = processor.find_soc_points()
|
||||
soc_df, integration_results = processor.calculate_resetting_soc(
|
||||
last_points_100_df, last_points_0_df
|
||||
)
|
||||
# soh_df = processor.calculate_soh(integration_results)
|
||||
# processor.update_database_with_soc(soc_df)
|
||||
|
||||
processor.plot_data(last_points_100_df, last_points_0_df, soc_df)
|
||||
|
||||
processor.disconnect_db()
|
0
src/akkudoktoreos/core/__init__.py
Normal file
0
src/akkudoktoreos/core/__init__.py
Normal file
Reference in New Issue
Block a user