mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-12-14 07:46:18 +00:00
- Akku mit Verlusten + Bug in der test.py Gesamtlast kein update
This commit is contained in:
80
test.py
80
test.py
@@ -20,7 +20,7 @@ import os
|
||||
|
||||
|
||||
|
||||
prediction_hours = 48
|
||||
prediction_hours = 24
|
||||
date = (datetime.now().date() + timedelta(hours = prediction_hours)).strftime("%Y-%m-%d")
|
||||
date_now = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
@@ -32,12 +32,13 @@ max_heizleistung = 1000 # 5 kW Heizleistung
|
||||
wp = Waermepumpe(max_heizleistung,prediction_hours)
|
||||
|
||||
akku = PVAkku(akku_size,prediction_hours)
|
||||
discharge_array = np.full(prediction_hours,1)
|
||||
|
||||
laden_moeglich = np.full(prediction_hours,1)
|
||||
eauto = EAuto(soc=60, capacity = 60000, power_charge = 7000, load_allowed = laden_moeglich)
|
||||
|
||||
discharge_array = np.full(prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||
|
||||
laden_moeglich = np.full(prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||
#np.full(prediction_hours,1)
|
||||
eauto = EAuto(soc=10, capacity = 60000, power_charge = 7000, load_allowed = laden_moeglich)
|
||||
min_soc_eauto = 20
|
||||
hohe_strafe = 10.0
|
||||
|
||||
|
||||
|
||||
@@ -52,12 +53,14 @@ gesamtlast = Gesamtlast()
|
||||
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
||||
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
|
||||
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
|
||||
# print(date_now," ",date)
|
||||
# print(leistung_haushalt.shape)
|
||||
gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
|
||||
|
||||
# PV Forecast
|
||||
###############
|
||||
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
||||
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||
PVforecast = PVForecast(prediction_hours = prediction_hours, url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
||||
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
|
||||
|
||||
@@ -79,19 +82,20 @@ gesamtlast.hinzufuegen("Heatpump", leistung_wp)
|
||||
# EAuto
|
||||
######################
|
||||
leistung_eauto = eauto.get_stuendliche_last()
|
||||
soc_eauto = eauto.get_stuendlicher_soc()
|
||||
gesamtlast.hinzufuegen("eauto", leistung_eauto)
|
||||
|
||||
print(gesamtlast.gesamtlast_berechnen())
|
||||
# print(gesamtlast.gesamtlast_berechnen())
|
||||
|
||||
# EMS / Stromzähler Bilanz
|
||||
ems = EnergieManagementSystem(akku, gesamtlast.gesamtlast_berechnen(), pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
|
||||
|
||||
|
||||
o = ems.simuliere(0)#ems.simuliere_ab_jetzt()
|
||||
pprint(o)
|
||||
pprint(o["Gesamtbilanz_Euro"])
|
||||
#pprint(o)
|
||||
#pprint(o["Gesamtbilanz_Euro"])
|
||||
|
||||
visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o)
|
||||
#visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o, soc_eauto)
|
||||
|
||||
|
||||
#sys.exit()
|
||||
@@ -100,23 +104,40 @@ visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, s
|
||||
|
||||
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
|
||||
def evaluate(individual):
|
||||
# Hier müssen Sie Ihre Logik einbauen, um die Gesamtbilanz zu berechnen
|
||||
# basierend auf dem gegebenen `individual` (discharge_array)
|
||||
#akku.set_discharge_per_hour(individual)
|
||||
ems.reset()
|
||||
ems.set_akku_discharge_hours(individual)
|
||||
o = ems.simuliere_ab_jetzt()
|
||||
eauto.reset()
|
||||
ems.set_akku_discharge_hours(individual[:prediction_hours])
|
||||
|
||||
eauto.set_laden_moeglich(individual[prediction_hours:])
|
||||
eauto.berechne_ladevorgang()
|
||||
leistung_eauto = eauto.get_stuendliche_last()
|
||||
gesamtlast.hinzufuegen("eauto", leistung_eauto)
|
||||
|
||||
ems.set_gesamtlast(gesamtlast.gesamtlast_berechnen())
|
||||
|
||||
o = ems.simuliere(0)
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"]
|
||||
#print(individual, " ",gesamtbilanz)
|
||||
|
||||
# Überprüfung, ob der Mindest-SoC erreicht wird
|
||||
final_soc = eauto.get_stuendlicher_soc()[-1] # Nimmt den SoC am Ende des Optimierungszeitraums
|
||||
strafe = 0.0
|
||||
#if final_soc < min_soc_eauto:
|
||||
# Fügt eine Strafe hinzu, wenn der Mindest-SoC nicht erreicht wird
|
||||
strafe = max(0,(min_soc_eauto - final_soc) * hohe_strafe ) # `hohe_strafe` ist ein vorher festgelegter Strafwert
|
||||
gesamtbilanz += strafe
|
||||
#if strafe > 0.0:
|
||||
# print(min_soc_eauto," - ",final_soc,"*10 = ",strafe)
|
||||
|
||||
return (gesamtbilanz,)
|
||||
|
||||
|
||||
# Werkzeug-Setup
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
toolbox = base.Toolbox()
|
||||
toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, prediction_hours)
|
||||
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, prediction_hours*2)
|
||||
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||
|
||||
toolbox.register("evaluate", evaluate)
|
||||
@@ -126,7 +147,7 @@ toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize():
|
||||
population = toolbox.population(n=100)
|
||||
population = toolbox.population(n=500)
|
||||
hof = tools.HallOfFame(1)
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
@@ -134,20 +155,31 @@ def optimize():
|
||||
stats.register("min", np.min)
|
||||
stats.register("max", np.max)
|
||||
|
||||
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=100,
|
||||
algorithms.eaSimple(population, toolbox, cxpb=0.4, mutpb=0.3, ngen=100,
|
||||
stats=stats, halloffame=hof, verbose=True)
|
||||
return hof[0]
|
||||
|
||||
best_solution = optimize()
|
||||
print("Beste Lösung:", best_solution)
|
||||
|
||||
ems.set_akku_discharge_hours(best_solution)
|
||||
o = ems.simuliere_ab_jetzt()
|
||||
pprint(o["Gesamtbilanz_Euro"])
|
||||
#ems.set_akku_discharge_hours(best_solution)
|
||||
ems.reset()
|
||||
eauto.reset()
|
||||
ems.set_akku_discharge_hours(best_solution[:prediction_hours])
|
||||
eauto.set_laden_moeglich(best_solution[prediction_hours:])
|
||||
eauto.berechne_ladevorgang()
|
||||
leistung_eauto = eauto.get_stuendliche_last()
|
||||
gesamtlast.hinzufuegen("eauto", leistung_eauto)
|
||||
ems.set_gesamtlast(gesamtlast.gesamtlast_berechnen())
|
||||
|
||||
o = ems.simuliere(0)
|
||||
|
||||
soc_eauto = eauto.get_stuendlicher_soc()
|
||||
print(soc_eauto)
|
||||
pprint(o)
|
||||
pprint(eauto.get_stuendlicher_soc())
|
||||
|
||||
visualisiere_ergebnisse(load,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o)
|
||||
visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o,soc_eauto,best_solution[:prediction_hours],best_solution[prediction_hours:] )
|
||||
|
||||
|
||||
# for data in forecast.get_forecast_data():
|
||||
|
||||
Reference in New Issue
Block a user