Add documentation. (#321)

Add documentation that covers:

- Prediction
- Measuremnt
- REST API

Add Python scripts that support automatic documentation generation using the Sphinx
sphinxcontrib.eval extension.

Add automatic update/ test for REST API documentation.

Filter proxy endpoints from REST API documentation.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2025-01-03 00:31:20 +01:00
committed by GitHub
parent 4cb6dc7270
commit 1866055478
27 changed files with 7565 additions and 6131 deletions

View File

@@ -0,0 +1,93 @@
% SPDX-License-Identifier: Apache-2.0
# Measurements
Measurements are utilized to refine predictions using real data from your system, thereby enhancing
accuracy.
- **Household Load Measurement**
- **Grid Export Measurement**
- **Grid Import Measurement**
## Storing Measurements
EOS stores measurements in a **key-value store**, where the term `measurement key` refers to the
unique identifier used to store and retrieve specific measurement data. Note that the key-value
store is memory-based, meaning that all stored data will be lost upon restarting the EOS REST
server.
:::{admonition} Todo
:class: note
Ensure that measurement data persists across server restarts.
:::
Several endpoints of the EOS REST server allow for the management and retrieval of these
measurements.
The measurement data must be or is provided in one of the following formats:
### 1. DateTimeData
A dictionary with the following structure:
```JSON
{
"start_datetime": "2024-01-01 00:00:00",
"interval": "1 Hour",
"<measurement key>": [value, value, ...],
"<measurement key>": [value, value, ...],
...
}
```
### 2. DateTimeDataFrame
A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html) dataframe with a
`DatetimeIndex`. Use [pandas.DataFrame.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json).
The column name of the data must be the same as the names of the `measurement key`s.
### 3. DateTimeSeries
A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html) series with a
`DatetimeIndex`. Use [pandas.Series.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.Series.to_json.html#pandas.Series.to_json).
## Load Measurement
The EOS measurement store provides for storing meter readings of loads. There are currently five loads
foreseen. The associated `measurement key`s are:
- `measurement_load0_mr`: Load0 meter reading [kWh]
- `measurement_load1_mr`: Load1 meter reading [kWh]
- `measurement_load2_mr`: Load2 meter reading [kWh]
- `measurement_load3_mr`: Load3 meter reading [kWh]
- `measurement_load4_mr`: Load4 meter reading [kWh]
For ease of use, you can assign descriptive names to the `measurement key`s to represent your
system's load sources. Use the following `configuration options` to set these names
(e.g., 'Dish Washer', 'Heat Pump'):
- `measurement_load0_name`: Name of the load0 source
- `measurement_load1_name`: Name of the load1 source
- `measurement_load2_name`: Name of the load2 source
- `measurement_load3_name`: Name of the load3 source
- `measurement_load4_name`: Name of the load4 source
Load measurements can be stored for any datetime. The values between different meter readings are
linearly approximated. Since optimization occurs on the hour, storing values between hours is
generally not useful.
The EOS measurement store automatically sums all given loads to create a total load value series
for specified intervals, usually one hour. This aggregated data can be used for load predictions.
## Grid Export/ Import Measurement
The EOS measurement store also allows for the storage of meter readings for grid import and export.
The associated `measurement key`s are:
- `measurement_grid_export_mr`: Export to grid meter reading [kWh]
- `measurement_grid_import_mr`: Import from grid meter reading [kWh]
:::{admonition} Todo
:class: note
Currently not used. Integrate grid meter readings into the respective predictions.
:::

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,401 @@
% SPDX-License-Identifier: Apache-2.0
# Predictions
Predictions, along with simulations and measurements, form the foundation upon which energy
optimization is executed. In EOS, a standard set of predictions is managed, including:
- **Household Load Prediction**
- **Electricity Price Prediction**
- **PV Power Prediction**
- **Weather Prediction**
## Storing Predictions
EOS stores predictions in a **key-value store**, where the term `prediction key` refers to the
unique key used to retrieve specific prediction data. The key-value store is in memory. Stored
data is lost on re-start of the EOS REST server.
## Prediction Providers
Most predictions can be sourced from various providers. The specific provider to use is configured
in the EOS configuration. For example:
```plaintext
weather_provider = "ClearOutside"
```
Some providers offer multiple prediction keys. For instance, a weather provider might provide data
to prediction keys like:
- `weather_temp_air` (air temperature)
- `weather_wind_speed` (wind speed)
### Prediction Import Providers
The prediction import providers are designed to import prediction data from a file or a JSON
string. An external entity should update the file or JSON string whenever new prediction data
becomes available.
The prediction data must be provided in one of the following formats:
#### 1. DateTimeData
A dictionary with the following structure:
```JSON
{
"start_datetime": "2024-01-01 00:00:00",
"interval": "1 Hour",
"<prediction key>": [value, value, ...],
"<prediction key>": [value, value, ...],
...
}
```
#### 2. DateTimeDataFrame
A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html) dataframe with a
`DatetimeIndex`. Use [pandas.DataFrame.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_json.html#pandas.DataFrame.to_json).
The column name of the data must be the same as the names of the `prediction key`s.
#### 3. DateTimeSeries
A JSON string created from a [pandas](https://pandas.pydata.org/docs/index.html) series with a
`DatetimeIndex`. Use [pandas.Series.to_json(orient="index")](https://pandas.pydata.org/docs/reference/api/pandas.Series.to_json.html#pandas.Series.to_json).
## Adjusted Predictions
Certain prediction keys include an `_adjusted` suffix, such as `load_total_adjusted`. These
predictions are adjusted by real data from your system's measurements if given to enhance accuracy.
For example, the load prediction provider `LoadAkkudoktor` takes generic load data assembled by
Akkudoktor.net, maps that to the yearly energy consumption given in the configuration option
`loadakkudoktor_year_energy`, and finally adjusts the predicted load by the `measurement_loads`
of your system.
## Prediction Updates
Predictions are updated at the start of each energy management run, i.e., when EOS performs
optimization. Key considerations for updates include:
- Predictions sourced from online providers are usually rate-limited to one retrieval per hour.
- Only predictions with a configured provider are updated.
- Some providers may not support all generic prediction keys, leading to potential gaps
in updated predictions even after update.
## Accessing Predictions
Prediction data can be accessed using the EOS **REST API** via the `/v1/prediction/<...>` endpoints.
In a standard configuration, the [**REST API**](http://0.0.0.0:8503/docs) of a running EOS instance
is available at [http://0.0.0.0:8503/docs](http://0.0.0.0:8503/docs). This link provides access to
the API documentation and allows you to explore available endpoints interactively.
To view all available prediction keys, use the **GET** `/v1/prediction/keys` endpoint.
If no keys are displayed, or if the ones you need are missing, it indicates that your configuration
lacks the necessary prediction provider settings. You can configure prediction providers by using
the **PUT** `/v1/config` endpoint. You may save your configuration to the EOS configuration file.
## Electricity Price Prediction
Prediction keys:
- `elecprice_marketprice_wh`: Electricity market price per Wh (€/Wh).
- `elecprice_marketprice_kwh`: Electricity market price per kWh (€/kWh).
Configuration options:
- `elecprice_provider`: Electricity price provider id of provider to be used.
- `ElecPriceAkkudoktor`: Retrieves from Akkudoktor.net.
- `ElecPriceImport`: Imports from a file or JSON string.
- `elecprice_charges_kwh`: Electricity price charges (€/kWh).
- `elecpriceimport_file_path`: Path to the file to import electricity price forecast data from.
- `elecpriceimport_json`: JSON string, dictionary of electricity price forecast value lists.
### ElecPriceAkkudoktor Provider
The `ElecPriceAkkudoktor` provider retrieves electricity prices directly from **Akkudoktor.net**,
which supplies price data for the next 24 hours. For periods beyond 24 hours, the provider generates
prices by extrapolating historical price data combined with the most recent actual prices obtained
from Akkudoktor.net. Electricity price charges given in the `elecprice_charges_kwh` configuration
option are added.
### ElecPriceImport Provider
The `ElecPriceImport` provider is designed to import electricity prices from a file or a JSON
string. An external entity should update the file or JSON string whenever new prediction data
becomes available.
The prediction key for the electricity price forecast data is:
- `elecprice_marketprice_wh`: Electricity market price per Wh (€/Wh).
The electricity proce forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the
`elecpriceimport_file_path` or `elecpriceimport_json` configuration option.
## Load Prediction
Prediction keys:
- `load_mean`: Predicted load mean value (W).
- `load_std`: Predicted load standard deviation (W).
- `load_mean_adjusted`: Predicted load mean value adjusted by load measurement (W).
Configuration options:
- `load_provider`: Load provider id of provider to be used.
- `LoadAkkudoktor`: Retrieves from local database.
- `LoadImport`: Imports from a file or JSON string.
- `loadakkudoktor_year_energy`: Yearly energy consumption (kWh).
- `loadimport_file_path`: Path to the file to import load forecast data from.
- `loadimport_json`: JSON string, dictionary of load forecast value lists.
### LoadAkkudoktor Provider
The `LoadAkkudoktor` provider retrieves generic load data from a local database and tailors it to
align with the annual energy consumption specified in the `loadakkudoktor_year_energy` configuration
option.
### LoadImport Provider
The `LoadImport` provider is designed to import load forecast data from a file or a JSON
string. An external entity should update the file or JSON string whenever new prediction data
becomes available.
The prediction keys for the load forecast data are:
- `load_mean`: Predicted load mean value (W).
- `load_std`: Predicted load standard deviation (W).
- `load_mean_adjusted`: Predicted load mean value adjusted by load measurement (W).
The load forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the `loadimport_file_path`
or `loadimport_json` configuration option.
## PV Power Prediction
Prediction keys:
- `pvforecast_ac_power`: Total DC power (W).
- `pvforecast_dc_power`: Total AC power (W).
Configuration options:
- `pvforecast_provider`: PVForecast provider id of provider to be used.
- `PVForecastAkkudoktor`: Retrieves from Akkudoktor.net.
- `PVForecastImport`: Imports from a file or JSON string.
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
- `pvforecast<0..5>_pvtechchoice`: PV technology. One of 'crystSi', 'CIS', 'CdTe', 'Unknown'.
- `pvforecast<0..5>_mountingplace`: Type of mounting for PV system. Options are 'free' for free-standing and 'building' for building-integrated.
- `pvforecast<0..5>_loss`: Sum of PV system losses in percent
- `pvforecast<0..5>_trackingtype`: Type of suntracking. 0=fixed, 1=single horizontal axis aligned north-south, 2=two-axis tracking, 3=vertical axis tracking, 4=single horizontal axis aligned east-west, 5=single inclined axis aligned north-south.
- `pvforecast<0..5>_optimal_surface_tilt`: Calculate the optimum tilt angle. Ignored for two-axis tracking.
- `pvforecast<0..5>_optimalangles`: Calculate the optimum tilt and azimuth angles. Ignored for two-axis tracking.
- `pvforecast<0..5>_albedo`: Proportion of the light hitting the ground that it reflects back.
- `pvforecast<0..5>_module_model`: Model of the PV modules of this plane.
- `pvforecast<0..5>_inverter_model`: Model of the inverter of this plane.
- `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
- `pvforecast<0..5>_modules_per_string`: Number of the PV modules of the strings of this plane.
- `pvforecast<0..5>_strings_per_inverter`: Number of the strings of the inverter of this plane.
- `pvforecastimport_file_path`: Path to the file to import PV forecast data from.
- `pvforecastimport_json`: JSON string, dictionary of PV forecast value lists.
### PVForecastAkkudoktor Provider
The `PVForecastAkkudoktor` provider retrieves the PV power forecast data directly from
**Akkudoktor.net**.
The following general configuration options of the PV system must be set:
- `latitude`: Latitude in decimal degrees, between -90 and 90, north is positive (ISO 19115) (°)"
- `longitude`: Longitude in decimal degrees, within -180 to 180 (°)
For each plane `<0..5>` of the PV system the following configuration options must be set:
- `pvforecast<0..5>_surface_tilt`: Tilt angle from horizontal plane. Ignored for two-axis tracking.
- `pvforecast<0..5>_surface_azimuth`: Orientation (azimuth angle) of the (fixed) plane. Clockwise from north (north=0, east=90, south=180, west=270).
- `pvforecast<0..5>_userhorizon`: Elevation of horizon in degrees, at equally spaced azimuth clockwise from north.
- `pvforecast<0..5>_inverter_paco`: AC power rating of the inverter. [W]
- `pvforecast<0..5>_peakpower`: Nominal power of PV system in kW.
Example:
```Python
{
"latitude": 50.1234,
"longitude": 9.7654,
"pvforecast_provider": "PVForecastAkkudoktor",
"pvforecast0_peakpower": 5.0,
"pvforecast0_surface_azimuth": -10,
"pvforecast0_surface_tilt": 7,
"pvforecast0_userhorizon": [20, 27, 22, 20],
"pvforecast0_inverter_paco": 10000,
"pvforecast1_peakpower": 4.8,
"pvforecast1_surface_azimuth": -90,
"pvforecast1_surface_tilt": 7,
"pvforecast1_userhorizon": [30, 30, 30, 50],
"pvforecast1_inverter_paco": 10000,
"pvforecast2_peakpower": 1.4,
"pvforecast2_surface_azimuth": -40,
"pvforecast2_surface_tilt": 60,
"pvforecast2_userhorizon": [60, 30, 0, 30],
"pvforecast2_inverter_paco": 2000,
"pvforecast3_peakpower": 1.6,
"pvforecast3_surface_azimuth": 5,
"pvforecast3_surface_tilt": 45,
"pvforecast3_userhorizon": [45, 25, 30, 60],
"pvforecast3_inverter_paco": 1400,
"pvforecast4_peakpower": None,
}
```
### PVForecastImport Provider
The `PVForecastImport` provider is designed to import PV forecast data from a file or a JSON
string. An external entity should update the file or JSON string whenever new prediction data
becomes available.
The prediction keys for the PV forecast data are:
- `pvforecast_ac_power`: Total DC power (W).
- `pvforecast_dc_power`: Total AC power (W).
The PV forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the
`pvforecastimport_file_path` or `pvforecastimport_json` configuration option.
## Weather Prediction
Prediction keys:
- `weather_dew_point`: Dew Point (°C)
- `weather_dhi`: Diffuse Horizontal Irradiance (W/m2)
- `weather_dni`: Direct Normal Irradiance (W/m2)
- `weather_feels_like`: Feels Like (°C)
- `weather_fog`: Fog (%)
- `weather_frost_chance`: Chance of Frost
- `weather_ghi`: Global Horizontal Irradiance (W/m2)
- `weather_high_clouds`: High Clouds (% Sky Obscured)
- `weather_low_clouds`: Low Clouds (% Sky Obscured)
- `weather_medium_clouds`: Medium Clouds (% Sky Obscured)
- `weather_ozone`: Ozone (du)
- `weather_precip_amt`: Precipitation Amount (mm)
- `weather_precip_prob`: Precipitation Probability (%)
- `weather_preciptable_water`: Precipitable Water (cm)
- `weather_precip_type`: Precipitation Type
- `weather_pressure`: Pressure (mb)
- `weather_relative_humidity`: Relative Humidity (%)
- `weather_temp_air`: Temperature (°C)
- `weather_total_clouds`: Total Clouds (% Sky Obscured)
- `weather_visibility`: Visibility (m)
- `weather_wind_direction`: "Wind Direction (°)
- `weather_wind_speed`: Wind Speed (kmph)
Configuration options:
- `weather_provider`: Load provider id of provider to be used.
- `BrightSky`: Retrieves from https://api.brightsky.dev.
- `ClearOutside`: Retrieves from https://clearoutside.com/forecast.
- `LoadImport`: Imports from a file or JSON string.
- `weatherimport_file_path`: Path to the file to import weatherforecast data from.
- `weatherimport_json`: JSON string, dictionary of weather forecast value lists.
### BrightSky Provider
The `BrightSky` provider retrieves the PV power forecast data directly from
[**BrightSky**](https://api.brightsky.dev).
The provider provides forecast data for the following prediction keys:
- `weather_dew_point`: Dew Point (°C)
- `weather_ghi`: Global Horizontal Irradiance (W/m2)
- `weather_precip_amt`: Precipitation Amount (mm)
- `weather_precip_prob`: Precipitation Probability (%)
- `weather_pressure`: Pressure (mb)
- `weather_relative_humidity`: Relative Humidity (%)
- `weather_temp_air`: Temperature (°C)
- `weather_total_clouds`: Total Clouds (% Sky Obscured)
- `weather_visibility`: Visibility (m)
- `weather_wind_direction`: "Wind Direction (°)
- `weather_wind_speed`: Wind Speed (kmph)
### ClearOutside Provider
The `ClearOutside` provider retrieves the PV power forecast data directly from
[**ClearOutside**](https://clearoutside.com/forecast).
The provider provides forecast data for the following prediction keys:
- `weather_dew_point`: Dew Point (°C)
- `weather_dhi`: Diffuse Horizontal Irradiance (W/m2)
- `weather_dni`: Direct Normal Irradiance (W/m2)
- `weather_feels_like`: Feels Like (°C)
- `weather_fog`: Fog (%)
- `weather_frost_chance`: Chance of Frost
- `weather_ghi`: Global Horizontal Irradiance (W/m2)
- `weather_high_clouds`: High Clouds (% Sky Obscured)
- `weather_low_clouds`: Low Clouds (% Sky Obscured)
- `weather_medium_clouds`: Medium Clouds (% Sky Obscured)
- `weather_ozone`: Ozone (du)
- `weather_precip_amt`: Precipitation Amount (mm)
- `weather_precip_prob`: Precipitation Probability (%)
- `weather_preciptable_water`: Precipitable Water (cm)
- `weather_precip_type`: Precipitation Type
- `weather_pressure`: Pressure (mb)
- `weather_relative_humidity`: Relative Humidity (%)
- `weather_temp_air`: Temperature (°C)
- `weather_total_clouds`: Total Clouds (% Sky Obscured)
- `weather_visibility`: Visibility (m)
- `weather_wind_direction`: "Wind Direction (°)
- `weather_wind_speed`: Wind Speed (kmph)
### WeatherImport Provider
The `WeatherImport` provider is designed to import weather forecast data from a file or a JSON
string. An external entity should update the file or JSON string whenever new prediction data
becomes available.
The prediction keys for the PV forecast data are:
- `weather_dew_point`: Dew Point (°C)
- `weather_dhi`: Diffuse Horizontal Irradiance (W/m2)
- `weather_dni`: Direct Normal Irradiance (W/m2)
- `weather_feels_like`: Feels Like (°C)
- `weather_fog`: Fog (%)
- `weather_frost_chance`: Chance of Frost
- `weather_ghi`: Global Horizontal Irradiance (W/m2)
- `weather_high_clouds`: High Clouds (% Sky Obscured)
- `weather_low_clouds`: Low Clouds (% Sky Obscured)
- `weather_medium_clouds`: Medium Clouds (% Sky Obscured)
- `weather_ozone`: Ozone (du)
- `weather_precip_amt`: Precipitation Amount (mm)
- `weather_precip_prob`: Precipitation Probability (%)
- `weather_preciptable_water`: Precipitable Water (cm)
- `weather_precip_type`: Precipitation Type
- `weather_pressure`: Pressure (mb)
- `weather_relative_humidity`: Relative Humidity (%)
- `weather_temp_air`: Temperature (°C)
- `weather_total_clouds`: Total Clouds (% Sky Obscured)
- `weather_visibility`: Visibility (m)
- `weather_wind_direction`: "Wind Direction (°)
- `weather_wind_speed`: Wind Speed (kmph)
The PV forecast data must be provided in one of the formats described in
<project:#prediction-import-providers>. The data source must be given in the
`weatherimport_file_path` or `pvforecastimport_json` configuration option.

View File

@@ -0,0 +1,7 @@
% SPDX-License-Identifier: Apache-2.0
# Server API
```{eval-sh}
./scripts/generate_openapi_md.py | ./scripts/extract_markdown.py --input-stdin --start-line "**Version**:"
```

View File

@@ -1,17 +0,0 @@
..
SPDX-License-Identifier: Apache-2.0
File has to be of RST format to make openapi directive work correctly
.. _akkudoktoreos_server_api:
Server API
##########
For a more detailed documentation see the Swagger interface: `EOS OpenAPI Spec <https://petstore3.swagger.io/?url=https://raw.githubusercontent.com/Akkudoktor-EOS/EOS/refs/heads/main/docs/akkudoktoreos/openapi.json>`_
.. openapi:: openapi.json
:examples:
..
Due to bugs in sphinxcontrib-openapi referenced request/response objects fail to render and anyOf is broken too.
:request:

View File

@@ -23,8 +23,8 @@ extensions = [
"sphinx.ext.autosummary",
"sphinx.ext.napoleon",
"sphinx_rtd_theme",
# "sphinxcontrib.openapi", buggy
"myst_parser",
"sphinxcontrib.eval",
]
templates_path = ["_templates"]
@@ -80,7 +80,7 @@ myst_url_schemes = {
},
}
myst_number_code_blocks = ["typescript"]
myst_heading_anchors = 2
myst_heading_anchors = 3
myst_footnote_transition = True
myst_dmath_double_inline = True
myst_enable_checkboxes = True
@@ -117,9 +117,6 @@ autodoc_default_options = {
# -- Options for autosummary -------------------------------------------------
autosummary_generate = True
# -- Options for openapi -----------------------------------------------------
# openapi_default_renderer = "httpdomain:old" buggy
# -- Options for napoleon -------------------------------------------------
napoleon_google_docstring = True
napoleon_numpy_docstring = False

View File

@@ -0,0 +1,3 @@
```{eval-sh}
./scripts/extract_markdown.py --input-file CONTRIBUTING.md
```

View File

@@ -0,0 +1,5 @@
# Getting Started
```{eval-sh}
./scripts/extract_markdown.py --input-file README.md --start-line "## Getting Involved"
```

View File

@@ -14,7 +14,9 @@ welcome.md
akkudoktoreos/about.md
develop/getting_started.md
develop/CONTRIBUTING.md
akkudoktoreos/serverapi.rst
akkudoktoreos/prediction.md
akkudoktoreos/measurement.md
akkudoktoreos/serverapi.md
akkudoktoreos/api.rst
```