mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Removed comments
This commit is contained in:
parent
6b8773a772
commit
19c7bb9ec5
@ -2,9 +2,7 @@
|
||||
|
||||
import os
|
||||
import random
|
||||
|
||||
from pprint import pprint
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use('Agg') # Sets the Matplotlib backend to 'Agg' for rendering plots in environments without a display
|
||||
import matplotlib.pyplot as plt
|
||||
@ -31,27 +29,6 @@ app = Flask(__name__)
|
||||
|
||||
opt_class = optimization_problem(prediction_hours=prediction_hours, strafe=10, optimization_hours=optimization_hours)
|
||||
|
||||
# @app.route('/last_correction', methods=['GET'])
|
||||
# def flask_last_correction():
|
||||
# if request.method == 'GET':
|
||||
# year_energy = float(request.args.get("year_energy"))
|
||||
# date_now, date = get_start_enddate(prediction_hours, startdate=datetime.now().date())
|
||||
# ###############
|
||||
# # Load Forecast
|
||||
# ###############
|
||||
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
||||
# leistung_haushalt = lf.get_stats_for_date_range(date_now, date)[0] # Only the expected value!
|
||||
#
|
||||
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours)
|
||||
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
|
||||
# # ###############
|
||||
# # Heat Pump (WP)
|
||||
# # ##############
|
||||
# # leistung_wp = wp.simulate_24h(temperature_forecast)
|
||||
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp)
|
||||
# last = gesamtlast.gesamtlast_berechnen()
|
||||
# print(last)
|
||||
# return jsonify(last.tolist())
|
||||
|
||||
@app.route('/soc', methods=['GET'])
|
||||
def flask_soc():
|
||||
@ -146,66 +123,6 @@ def flask_gesamtlast():
|
||||
last = gesamtlast.gesamtlast_berechnen() # Compute total load
|
||||
return jsonify(last.tolist())
|
||||
|
||||
# @app.route('/gesamtlast', methods=['GET'])
|
||||
# def flask_gesamtlast():
|
||||
# if request.method == 'GET':
|
||||
# year_energy = float(request.args.get("year_energy")) # Get annual energy value from query parameters
|
||||
# prediction_hours = int(request.args.get("hours", 48)) # Default to 48 hours if not specified
|
||||
# date_now = datetime.now() # Get the current date and time
|
||||
# end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S') # Calculate end date based on prediction hours
|
||||
|
||||
# ###############
|
||||
# # Load Forecast
|
||||
# ###############
|
||||
# # Instantiate LastEstimator to retrieve measured data
|
||||
# estimator = LastEstimator()
|
||||
# start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d') # Start date: last 60 days
|
||||
# end_date = date_now.strftime('%Y-%m-%d') # Current date
|
||||
|
||||
# last_df = estimator.get_last(start_date, end_date) # Get last load data
|
||||
|
||||
# selected_columns = last_df[['timestamp', 'Last']] # Select relevant columns
|
||||
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') # Floor timestamps to the nearest hour
|
||||
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') # Convert 'Last' to numeric, coerce errors
|
||||
# cleaned_data = selected_columns.dropna() # Clean data by dropping NaN values
|
||||
|
||||
# # Instantiate LoadForecast
|
||||
# lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
||||
|
||||
# # Generate forecast data
|
||||
# forecast_list = [] # List to hold daily forecasts
|
||||
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): # Iterate over date range
|
||||
# date_str = single_date.strftime('%Y-%m-%d') # Format date
|
||||
# daily_forecast = lf.get_daily_stats(date_str) # Get daily stats from LoadForecast
|
||||
# mean_values = daily_forecast[0] # Extract mean values
|
||||
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] # Generate hours for the day
|
||||
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) # Create DataFrame for daily forecast
|
||||
# forecast_list.append(daily_forecast_df) # Append to the list
|
||||
|
||||
# forecast_df = pd.concat(forecast_list, ignore_index=True) # Concatenate all daily forecasts
|
||||
|
||||
# # Create LoadPredictionAdjuster instance
|
||||
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
|
||||
# adjuster.calculate_weighted_mean() # Calculate weighted mean for adjustments
|
||||
# adjuster.adjust_predictions() # Adjust predictions based on measured data
|
||||
|
||||
# # Predict the next hours
|
||||
# future_predictions = adjuster.predict_next_hours(prediction_hours) # Predict future load
|
||||
|
||||
# leistung_haushalt = future_predictions['Adjusted Pred'].values # Extract household power predictions
|
||||
|
||||
# gesamtlast = Gesamtlast(prediction_hours=prediction_hours) # Create Gesamtlast instance
|
||||
# gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) # Add household load to total load calculation
|
||||
|
||||
# # ###############
|
||||
# # # WP (Heat Pump)
|
||||
# # ##############
|
||||
# # leistung_wp = wp.simulate_24h(temperature_forecast) # Simulate heat pump load for 24 hours
|
||||
# # gesamtlast.hinzufuegen("Heatpump", leistung_wp) # Add heat pump load to total load calculation
|
||||
|
||||
# last = gesamtlast.gesamtlast_berechnen() # Calculate total load
|
||||
# print(last) # Output total load
|
||||
# return jsonify(last.tolist()) # Return total load as JSON
|
||||
|
||||
@app.route('/gesamtlast_simple', methods=['GET'])
|
||||
def flask_gesamtlast_simple():
|
||||
@ -322,8 +239,3 @@ if __name__ == '__main__':
|
||||
except Exception as e:
|
||||
print(f"Could not bind to host {host}:{port}. Error: {e}") # Error handling for binding issues
|
||||
|
||||
# PV Forecast:
|
||||
# object {
|
||||
# pvpower: array[48]
|
||||
# temperature: array[48]
|
||||
# }
|
||||
|
Loading…
x
Reference in New Issue
Block a user