mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 00:45:22 +00:00
restructure and optimization of class_optimize.py
- removed unused functions - restructure code -optimized parameters of optimization
This commit is contained in:
parent
6d19a97223
commit
1f01455825
@ -1,264 +1,165 @@
|
||||
from flask import Flask, jsonify, request
|
||||
import numpy as np
|
||||
from modules.class_load import *
|
||||
from modules.class_ems import *
|
||||
from modules.class_pv_forecast import *
|
||||
from modules.class_akku import *
|
||||
|
||||
from modules.class_heatpump import *
|
||||
from modules.class_load_container import *
|
||||
from modules.class_inverter import *
|
||||
from modules.class_sommerzeit import *
|
||||
from modules.visualize import *
|
||||
from modules.class_haushaltsgeraet import *
|
||||
import os
|
||||
from flask import Flask, send_from_directory
|
||||
from pprint import pprint
|
||||
import matplotlib
|
||||
matplotlib.use('Agg') # Setzt das Backend auf Agg
|
||||
import matplotlib.pyplot as plt
|
||||
import string
|
||||
from datetime import datetime
|
||||
from deap import base, creator, tools, algorithms
|
||||
import numpy as np
|
||||
import sys
|
||||
import random
|
||||
import os
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
import numpy as np
|
||||
|
||||
from deap import base, creator, tools, algorithms
|
||||
|
||||
from modules.class_akku import PVAkku
|
||||
from modules.class_ems import EnergieManagementSystem
|
||||
from modules.class_haushaltsgeraet import Haushaltsgeraet
|
||||
from modules.class_inverter import Wechselrichter
|
||||
from config import moegliche_ladestroeme_in_prozent
|
||||
from modules.visualize import visualisiere_ergebnisse
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from config import *
|
||||
|
||||
def isfloat(num):
|
||||
try:
|
||||
float(num)
|
||||
return True
|
||||
except:
|
||||
return False
|
||||
|
||||
def differential_evolution(population, toolbox, cxpb, mutpb, ngen, stats=None, halloffame=None, verbose=__debug__):
|
||||
"""Differential Evolution Algorithm"""
|
||||
|
||||
# Evaluate the entire population
|
||||
fitnesses = list(map(toolbox.evaluate, population))
|
||||
for ind, fit in zip(population, fitnesses):
|
||||
ind.fitness.values = fit
|
||||
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
logbook = tools.Logbook()
|
||||
logbook.header = ['gen', 'nevals'] + (stats.fields if stats else [])
|
||||
|
||||
for gen in range(ngen):
|
||||
# Generate the next generation by mutation and recombination
|
||||
for i, target in enumerate(population):
|
||||
a, b, c = random.sample([ind for ind in population if ind != target], 3)
|
||||
mutant = toolbox.clone(a)
|
||||
for k in range(len(mutant)):
|
||||
mutant[k] = c[k] + mutpb * (a[k] - b[k]) # Mutation step
|
||||
if random.random() < cxpb: # Recombination step
|
||||
mutant[k] = target[k]
|
||||
|
||||
# Evaluate the mutant
|
||||
mutant.fitness.values = toolbox.evaluate(mutant)
|
||||
|
||||
# Replace if mutant is better
|
||||
if mutant.fitness > target.fitness:
|
||||
population[i] = mutant
|
||||
|
||||
# Update hall of fame
|
||||
if halloffame is not None:
|
||||
halloffame.update(population)
|
||||
|
||||
# Gather all the fitnesses in one list and print the stats
|
||||
record = stats.compile(population) if stats else {}
|
||||
logbook.record(gen=gen, nevals=len(population), **record)
|
||||
if verbose:
|
||||
print(logbook.stream)
|
||||
|
||||
return population, logbook
|
||||
|
||||
|
||||
|
||||
class optimization_problem:
|
||||
def __init__(self, prediction_hours=24, strafe = 10, optimization_hours= 24):
|
||||
self.prediction_hours = prediction_hours#
|
||||
def __init__(self, prediction_hours=48, strafe=10, optimization_hours=24, verbose=False, fixed_seed=None):
|
||||
self.prediction_hours = prediction_hours
|
||||
self.strafe = strafe
|
||||
self.opti_param = None
|
||||
self.fixed_eauto_hours = prediction_hours-optimization_hours
|
||||
self.fixed_eauto_hours = prediction_hours - optimization_hours
|
||||
self.possible_charge_values = moegliche_ladestroeme_in_prozent
|
||||
|
||||
self.verbose = verbose
|
||||
if fixed_seed is not None:
|
||||
random.seed(fixed_seed)
|
||||
|
||||
def split_individual(self, individual):
|
||||
"""
|
||||
Teilt das gegebene Individuum in die verschiedenen Parameter auf:
|
||||
- Entladeparameter (discharge_hours_bin)
|
||||
- Ladeparameter (eautocharge_hours_float)
|
||||
- Haushaltsgeräte (spuelstart_int, falls vorhanden)
|
||||
"""
|
||||
# Extrahiere die Entlade- und Ladeparameter direkt aus dem Individuum
|
||||
discharge_hours_bin = individual[:self.prediction_hours] # Erste 24 Werte sind Bool (Entladen)
|
||||
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2] # Nächste 24 Werte sind Float (Laden)
|
||||
"""Splits an individual into its components: discharge hours, EV charge hours, and appliance start."""
|
||||
discharge_hours_bin = individual[:self.prediction_hours]
|
||||
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2]
|
||||
|
||||
spuelstart_int = None
|
||||
if self.opti_param and self.opti_param.get("haushaltsgeraete", 0) > 0:
|
||||
spuelstart_int = individual[-1] # Letzter Wert ist Startzeit für Haushaltsgerät
|
||||
spuelstart_int = individual[-1] if self.opti_param.get("haushaltsgeraete", 0) > 0 else None
|
||||
|
||||
return discharge_hours_bin, eautocharge_hours_float, spuelstart_int
|
||||
|
||||
|
||||
def setup_deap_environment(self,opti_param, start_hour):
|
||||
def setup_deap_environment(self, opti_param, start_hour):
|
||||
"""Sets up the DEAP environment with the given optimization parameters."""
|
||||
self.opti_param = opti_param
|
||||
|
||||
|
||||
if "FitnessMin" in creator.__dict__:
|
||||
del creator.FitnessMin
|
||||
del creator.FitnessMin
|
||||
if "Individual" in creator.__dict__:
|
||||
del creator.Individual
|
||||
|
||||
del creator.Individual
|
||||
# Clear any previous fitness and individual definitions
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
# PARAMETER
|
||||
|
||||
self.toolbox = base.Toolbox()
|
||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||
#self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
|
||||
|
||||
self.toolbox.register("attr_float", random.uniform, 0, 1)
|
||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||
|
||||
|
||||
|
||||
###################
|
||||
# Haushaltsgeraete
|
||||
#print("Haushalt:",opti_param["haushaltsgeraete"])
|
||||
if opti_param["haushaltsgeraete"]>0:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
||||
return creator.Individual(attrs)
|
||||
|
||||
else:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
return creator.Individual(attrs)
|
||||
def create_individual():
|
||||
"""Creates an individual based on the prediction hours and appliance start time."""
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)]
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)]
|
||||
if opti_param["haushaltsgeraete"] > 0:
|
||||
attrs.append(self.toolbox.attr_int())
|
||||
return creator.Individual(attrs)
|
||||
|
||||
|
||||
|
||||
self.toolbox.register("individual", create_individual)#tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
|
||||
self.toolbox.register("individual", create_individual)
|
||||
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
||||
self.toolbox.register("mate", tools.cxTwoPoint)
|
||||
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
|
||||
|
||||
|
||||
|
||||
#self.toolbox.register("mutate", mutate_choice, self.possible_charge_values, indpb=0.1)
|
||||
#self.toolbox.register("mutate", tools.mutUniformInt, low=0, up=len(self.possible_charge_values)-1, indpb=0.1)
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
def evaluate_inner(self,individual, ems,start_hour):
|
||||
def evaluate_inner(self, individual, ems, start_hour):
|
||||
"""Performs inner evaluation of an individual's performance."""
|
||||
ems.reset()
|
||||
|
||||
#print("Spuel:",self.opti_param)
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||
if self.opti_param["haushaltsgeraete"] > 0:
|
||||
ems.set_haushaltsgeraet_start(spuelstart_int, global_start_hour=start_hour)
|
||||
|
||||
# Haushaltsgeraete
|
||||
if self.opti_param["haushaltsgeraete"]>0:
|
||||
ems.set_haushaltsgeraet_start(spuelstart_int,global_start_hour=start_hour)
|
||||
|
||||
|
||||
|
||||
#discharge_hours_bin = np.full(self.prediction_hours,0)
|
||||
ems.set_akku_discharge_hours(discharge_hours_bin)
|
||||
|
||||
# Setze die festen Werte für die letzten x Stunden
|
||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||
eautocharge_hours_float[i] = 0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
|
||||
|
||||
#print(eautocharge_hours_float)
|
||||
|
||||
# Ensure fixed EV charging hours are set to 0.0
|
||||
eautocharge_hours_float[self.prediction_hours - self.fixed_eauto_hours:] = [0.0] * self.fixed_eauto_hours
|
||||
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
||||
|
||||
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
return o
|
||||
|
||||
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
|
||||
def evaluate(self,individual,ems,parameter,start_hour,worst_case):
|
||||
return ems.simuliere(start_hour)
|
||||
|
||||
def evaluate(self, individual, ems, parameter, start_hour, worst_case):
|
||||
"""
|
||||
Fitness function that evaluates the given individual by applying it to the EMS and calculating penalties and rewards.
|
||||
"""
|
||||
try:
|
||||
o = self.evaluate_inner(individual,ems,start_hour)
|
||||
except:
|
||||
return (100000.0,)
|
||||
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"]
|
||||
evaluation_results = self.evaluate_inner(individual, ems, start_hour)
|
||||
except Exception:
|
||||
return (100000.0,)
|
||||
|
||||
# Calculate total balance in euros
|
||||
gesamtbilanz = evaluation_results["Gesamtbilanz_Euro"]
|
||||
if worst_case:
|
||||
gesamtbilanz = gesamtbilanz * -1.0
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||
max_ladeleistung = np.max(moegliche_ladestroeme_in_prozent)
|
||||
gesamtbilanz *= -1.0
|
||||
|
||||
strafe_überschreitung = 0.0
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||
max_ladeleistung = np.max(self.possible_charge_values)
|
||||
|
||||
# Ladeleistung überschritten?
|
||||
for ladeleistung in eautocharge_hours_float:
|
||||
if ladeleistung > max_ladeleistung:
|
||||
# Berechne die Überschreitung
|
||||
überschreitung = ladeleistung - max_ladeleistung
|
||||
# Füge eine Strafe hinzu (z.B. 10 Einheiten Strafe pro Prozentpunkt Überschreitung)
|
||||
strafe_überschreitung += self.strafe * 10 # Hier ist die Strafe proportional zur Überschreitung
|
||||
# Calculate penalties
|
||||
strafe_ueberschreitung = self.calculate_exceeding_penalty(eautocharge_hours_float, max_ladeleistung)
|
||||
gesamtbilanz += self.calculate_unused_discharge_penalty(discharge_hours_bin)
|
||||
gesamtbilanz += self.calculate_restricted_charging_penalty(eautocharge_hours_float, parameter)
|
||||
|
||||
|
||||
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
|
||||
for i in range(0, self.prediction_hours):
|
||||
if discharge_hours_bin[i] == 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += 0.01 # Bestrafe den Optimierer
|
||||
|
||||
|
||||
# E-Auto nur die ersten self.fixed_eauto_hours
|
||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||
|
||||
|
||||
# Überprüfung, ob der Mindest-SoC erreicht wird
|
||||
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
|
||||
|
||||
if (parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) <= 0.0:
|
||||
#print (parameter['eauto_min_soc']," " ,ems.eauto.ladezustand_in_prozent()," ",(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()))
|
||||
for i in range(0, self.prediction_hours):
|
||||
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||
# Check minimum state of charge (SoC) for the EV
|
||||
final_soc = ems.eauto.ladezustand_in_prozent()
|
||||
if (parameter['eauto_min_soc'] - final_soc) > 0.0:
|
||||
gesamtbilanz += self.calculate_min_soc_penalty(eautocharge_hours_float, parameter, final_soc)
|
||||
|
||||
|
||||
eauto_roi = (parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent())
|
||||
individual.extra_data = (o["Gesamtbilanz_Euro"],o["Gesamt_Verluste"], eauto_roi )
|
||||
|
||||
|
||||
# Record extra data for the individual
|
||||
eauto_roi = parameter['eauto_min_soc'] - final_soc
|
||||
individual.extra_data = (evaluation_results["Gesamtbilanz_Euro"], evaluation_results["Gesamt_Verluste"], eauto_roi)
|
||||
|
||||
# Calculate residual energy in the battery
|
||||
restenergie_akku = ems.akku.aktueller_energieinhalt()
|
||||
restwert_akku = restenergie_akku*parameter["preis_euro_pro_wh_akku"]
|
||||
# print(restenergie_akku)
|
||||
# print(parameter["preis_euro_pro_wh_akku"])
|
||||
# print(restwert_akku)
|
||||
# print()
|
||||
strafe = 0.0
|
||||
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe )
|
||||
gesamtbilanz += strafe - restwert_akku + strafe_überschreitung
|
||||
#gesamtbilanz += o["Gesamt_Verluste"]/10000.0
|
||||
|
||||
restwert_akku = restenergie_akku * parameter["preis_euro_pro_wh_akku"]
|
||||
|
||||
# Final penalties and fitness calculation
|
||||
strafe = max(0, (parameter['eauto_min_soc'] - final_soc) * self.strafe)
|
||||
gesamtbilanz += strafe - restwert_akku + strafe_ueberschreitung
|
||||
|
||||
return (gesamtbilanz,)
|
||||
def calculate_exceeding_penalty(self, eautocharge_hours_float, max_ladeleistung):
|
||||
"""Calculate penalties for exceeding charging power limits."""
|
||||
penalty = 0.0
|
||||
for ladeleistung in eautocharge_hours_float:
|
||||
if ladeleistung > max_ladeleistung:
|
||||
penalty += self.strafe * 10 # Penalty is proportional to the violation
|
||||
return penalty
|
||||
|
||||
def calculate_unused_discharge_penalty(self, discharge_hours_bin):
|
||||
"""Calculate penalty for unused discharge hours."""
|
||||
penalty = 0.0
|
||||
for hour in discharge_hours_bin:
|
||||
if hour == 0.0:
|
||||
penalty += 0.01 # Small penalty for each unused discharge hour
|
||||
return penalty
|
||||
|
||||
def calculate_restricted_charging_penalty(self, eautocharge_hours_float, parameter):
|
||||
"""Calculate penalty for charging the EV during restricted hours."""
|
||||
penalty = 0.0
|
||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||
if eautocharge_hours_float[i] != 0.0:
|
||||
penalty += self.strafe # Penalty for charging during fixed hours
|
||||
return penalty
|
||||
|
||||
def calculate_min_soc_penalty(self, eautocharge_hours_float, parameter, final_soc):
|
||||
"""Calculate penalty for not meeting the minimum state of charge (SoC)."""
|
||||
penalty = 0.0
|
||||
for hour in eautocharge_hours_float:
|
||||
if hour != 0.0:
|
||||
penalty += self.strafe # Penalty for not meeting minimum SoC
|
||||
return penalty
|
||||
# Genetic Algorithm for Optimization
|
||||
|
||||
|
||||
|
||||
# Example of how to use the callback in your optimization
|
||||
|
||||
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize(self,start_solution=None):
|
||||
|
||||
|
||||
def optimize(self, start_solution=None, generations_no_improvement=20):
|
||||
population = self.toolbox.population(n=300)
|
||||
hof = tools.HallOfFame(1)
|
||||
|
||||
@ -267,151 +168,118 @@ class optimization_problem:
|
||||
stats.register("min", np.min)
|
||||
stats.register("max", np.max)
|
||||
|
||||
print("Start:",start_solution)
|
||||
|
||||
if self.verbose:
|
||||
print("Start solution:", start_solution)
|
||||
|
||||
if start_solution is not None and start_solution != -1:
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
population.insert(1, creator.Individual(start_solution))
|
||||
population.insert(2, creator.Individual(start_solution))
|
||||
|
||||
algorithms.eaMuPlusLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.5, mutpb=0.3, ngen=400, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaSimple(population, self.toolbox, cxpb=0.3, mutpb=0.3, ngen=200, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaMuCommaLambda(population, self.toolbox, mu=100, lambda_=200, cxpb=0.2, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
|
||||
#population, log = differential_evolution(population, self.toolbox, cxpb=0.2, mutpb=0.5, ngen=200, stats=stats, halloffame=hof, verbose=True)
|
||||
|
||||
starting_individual = creator.Individual(start_solution)
|
||||
population = [starting_individual] * 3 + population
|
||||
|
||||
|
||||
# Register the convergence callback
|
||||
convergence_count = 0
|
||||
convergence_last = float('inf')
|
||||
generations_no_improvement = 20
|
||||
|
||||
|
||||
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
|
||||
# Run the genetic algorithm with 3 additional callback per generation
|
||||
for gen in range(1000): # Define the number of generations
|
||||
population, logbook = algorithms.eaMuPlusLambda(
|
||||
population, self.toolbox,
|
||||
mu=100, lambda_=200,
|
||||
cxpb=0.5, mutpb=0.3,
|
||||
ngen=2, stats=stats, # Run for 1 generation at a time
|
||||
halloffame=hof, verbose=False
|
||||
)
|
||||
# Retrieve statistics from the logbook (only one generation per loop)
|
||||
if len(logbook) > 0:
|
||||
gen_stats = logbook[-1]
|
||||
# Print generation stats if self.verbose is True
|
||||
if self.verbose:
|
||||
print(f"Generation {gen}: {gen_stats}")
|
||||
|
||||
# Call the convergence check after each generation
|
||||
|
||||
best_fitness = max(ind.fitness.values[0] for ind in population)
|
||||
|
||||
if best_fitness >= convergence_last:
|
||||
convergence_count += 1
|
||||
if convergence_count >= generations_no_improvement:
|
||||
if self.verbose:
|
||||
print(f"Convergence detected at generation {gen}. No improvement in the last {generations_no_improvement} generations.")
|
||||
break
|
||||
else:
|
||||
convergence_count = 0
|
||||
convergence_last = best_fitness
|
||||
# Collect extra data (if exists) from the individuals in the population
|
||||
member = {"bilanz": [], "verluste": [], "nebenbedingung": []}
|
||||
for ind in population:
|
||||
if hasattr(ind, 'extra_data'):
|
||||
extra_value1, extra_value2,extra_value3 = ind.extra_data
|
||||
member["bilanz"].append(extra_value1)
|
||||
member["verluste"].append(extra_value2)
|
||||
member["nebenbedingung"].append(extra_value3)
|
||||
|
||||
|
||||
if hasattr(ind, 'extra_data'):
|
||||
member["bilanz"].append(ind.extra_data[0])
|
||||
member["verluste"].append(ind.extra_data[1])
|
||||
member["nebenbedingung"].append(ind.extra_data[2])
|
||||
print(max(ind.fitness.values[0] for ind in population))
|
||||
|
||||
# Return the best solution
|
||||
return hof[0], member
|
||||
|
||||
|
||||
def optimierung_ems(self,parameter=None, start_hour=None,worst_case=False, startdate=None):
|
||||
|
||||
|
||||
############
|
||||
# Parameter
|
||||
############
|
||||
if startdate == None:
|
||||
date = (datetime.now().date() + timedelta(hours = self.prediction_hours)).strftime("%Y-%m-%d")
|
||||
date_now = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
def optimierung_ems(self, parameter=None, start_hour=None, worst_case=False, startdate=None):
|
||||
"""Orchestrates the entire EMS optimization."""
|
||||
current_date = datetime.now()
|
||||
if startdate is None:
|
||||
date = (current_date + timedelta(hours=self.prediction_hours)).strftime("%Y-%m-%d")
|
||||
date_now = current_date.strftime("%Y-%m-%d")
|
||||
else:
|
||||
date = (startdate + timedelta(hours = self.prediction_hours)).strftime("%Y-%m-%d")
|
||||
date_now = startdate.strftime("%Y-%m-%d")
|
||||
#print("Start_date:",date_now)
|
||||
|
||||
akku_size = parameter['pv_akku_cap'] # Wh
|
||||
|
||||
einspeiseverguetung_euro_pro_wh = np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
|
||||
discharge_array = np.full(self.prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||
akku = PVAkku(kapazitaet_wh=akku_size,hours=self.prediction_hours,start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
||||
akku.set_charge_per_hour(discharge_array)
|
||||
|
||||
|
||||
laden_moeglich = np.full(self.prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
||||
eauto.set_charge_per_hour(laden_moeglich)
|
||||
min_soc_eauto = parameter['eauto_min_soc']
|
||||
start_params = parameter['start_solution']
|
||||
|
||||
###############
|
||||
# spuelmaschine
|
||||
##############
|
||||
print(parameter)
|
||||
if parameter["haushaltsgeraet_dauer"] >0:
|
||||
spuelmaschine = Haushaltsgeraet(hours=self.prediction_hours, verbrauch_kwh=parameter["haushaltsgeraet_wh"], dauer_h=parameter["haushaltsgeraet_dauer"])
|
||||
spuelmaschine.set_startzeitpunkt(start_hour) # Startet jetzt
|
||||
else:
|
||||
spuelmaschine = None
|
||||
date = (startdate + timedelta(hours=self.prediction_hours)).strftime("%Y-%m-%d")
|
||||
date_now = startdate.strftime("%Y-%m-%d")
|
||||
|
||||
# Initialize battery and EV objects
|
||||
akku = PVAkku(kapazitaet_wh=parameter['pv_akku_cap'], hours=self.prediction_hours,
|
||||
start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
||||
akku.set_charge_per_hour(np.ones(self.prediction_hours))
|
||||
|
||||
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours,
|
||||
lade_effizienz=parameter["eauto_charge_efficiency"], max_ladeleistung_w=parameter["eauto_charge_power"],
|
||||
start_soc_prozent=parameter["eauto_soc"])
|
||||
eauto.set_charge_per_hour(np.ones(self.prediction_hours))
|
||||
|
||||
|
||||
|
||||
# Household appliance initialization
|
||||
spuelmaschine = None
|
||||
if parameter["haushaltsgeraet_dauer"] > 0:
|
||||
spuelmaschine = Haushaltsgeraet(hours=self.prediction_hours,
|
||||
verbrauch_kwh=parameter["haushaltsgeraet_wh"],
|
||||
dauer_h=parameter["haushaltsgeraet_dauer"])
|
||||
spuelmaschine.set_startzeitpunkt(start_hour)
|
||||
|
||||
|
||||
ems = EnergieManagementSystem(
|
||||
gesamtlast=parameter["gesamtlast"],
|
||||
pv_prognose_wh=parameter['pv_forecast'],
|
||||
strompreis_euro_pro_wh=parameter["strompreis_euro_pro_wh"],
|
||||
einspeiseverguetung_euro_pro_wh=np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]),
|
||||
eauto=eauto,
|
||||
haushaltsgeraet=spuelmaschine,
|
||||
wechselrichter=Wechselrichter(10000, akku)
|
||||
)
|
||||
|
||||
self.setup_deap_environment({"haushaltsgeraete": int(spuelmaschine is not None)}, start_hour)
|
||||
|
||||
###############
|
||||
# PV Forecast
|
||||
###############
|
||||
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
||||
# PVforecast = PVForecast(prediction_hours = self.prediction_hours, url=pv_forecast_url)
|
||||
# #print("PVPOWER",parameter['pvpowernow'])
|
||||
# if isfloat(parameter['pvpowernow']):
|
||||
# PVforecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=float(parameter['pvpowernow']))
|
||||
# #PVforecast.print_ac_power_and_measurement()
|
||||
pv_forecast = parameter['pv_forecast'] #PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
||||
temperature_forecast = parameter['temperature_forecast'] #PVforecast.get_temperature_for_date_range(date_now,date)
|
||||
|
||||
|
||||
###############
|
||||
# Strompreise
|
||||
###############
|
||||
specific_date_prices = parameter["strompreis_euro_pro_wh"]
|
||||
print(specific_date_prices)
|
||||
#print("https://api.akkudoktor.net/prices?start="+date_now+"&end="+date)
|
||||
|
||||
|
||||
wr = Wechselrichter(10000, akku)
|
||||
|
||||
ems = EnergieManagementSystem(gesamtlast = parameter["gesamtlast"], pv_prognose_wh=pv_forecast, strompreis_euro_pro_wh=specific_date_prices, einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh, eauto=eauto, haushaltsgeraet=spuelmaschine,wechselrichter=wr)
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
###############
|
||||
# Optimizer Init
|
||||
##############
|
||||
opti_param = {}
|
||||
opti_param["haushaltsgeraete"] = 0
|
||||
if spuelmaschine != None:
|
||||
opti_param["haushaltsgeraete"] = 1
|
||||
|
||||
self.setup_deap_environment(opti_param, start_hour)
|
||||
|
||||
def evaluate_wrapper(individual):
|
||||
return self.evaluate(individual, ems, parameter,start_hour,worst_case)
|
||||
|
||||
self.toolbox.register("evaluate", evaluate_wrapper)
|
||||
start_solution, extra_data = self.optimize(start_params)
|
||||
self.toolbox.register("evaluate", lambda ind: self.evaluate(ind, ems, parameter, start_hour, worst_case))
|
||||
start_solution, extra_data = self.optimize(parameter['start_solution'])
|
||||
best_solution = start_solution
|
||||
o = self.evaluate_inner(best_solution, ems,start_hour)
|
||||
eauto = ems.eauto.to_dict()
|
||||
spuelstart_int = None
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(best_solution)
|
||||
|
||||
|
||||
print(parameter)
|
||||
print(best_solution)
|
||||
visualisiere_ergebnisse(parameter["gesamtlast"], pv_forecast, specific_date_prices, o,discharge_hours_bin,eautocharge_hours_float , temperature_forecast, start_hour, self.prediction_hours,einspeiseverguetung_euro_pro_wh,extra_data=extra_data)
|
||||
os.system("cp visualisierungsergebnisse.pdf ~/")
|
||||
|
||||
# 'Eigenverbrauch_Wh_pro_Stunde': eigenverbrauch_wh_pro_stunde,
|
||||
# 'Netzeinspeisung_Wh_pro_Stunde': netzeinspeisung_wh_pro_stunde,
|
||||
# 'Netzbezug_Wh_pro_Stunde': netzbezug_wh_pro_stunde,
|
||||
# 'Kosten_Euro_pro_Stunde': kosten_euro_pro_stunde,
|
||||
# 'akku_soc_pro_stunde': akku_soc_pro_stunde,
|
||||
# 'Einnahmen_Euro_pro_Stunde': einnahmen_euro_pro_stunde,
|
||||
# 'Gesamtbilanz_Euro': gesamtkosten_euro,
|
||||
# 'E-Auto_SoC_pro_Stunde':eauto_soc_pro_stunde,
|
||||
# 'Gesamteinnahmen_Euro': sum(einnahmen_euro_pro_stunde),
|
||||
# 'Gesamtkosten_Euro': sum(kosten_euro_pro_stunde),
|
||||
# "Verluste_Pro_Stunde":verluste_wh_pro_stunde,
|
||||
# "Gesamt_Verluste":sum(verluste_wh_pro_stunde),
|
||||
# "Haushaltsgeraet_wh_pro_stunde":haushaltsgeraet_wh_pro_stunde
|
||||
|
||||
#print(eauto)
|
||||
return {"discharge_hours_bin":discharge_hours_bin, "eautocharge_hours_float":eautocharge_hours_float ,"result":o ,"eauto_obj":eauto,"start_solution":best_solution,"spuelstart":spuelstart_int,"simulation_data":o}
|
||||
|
||||
|
||||
|
||||
# Perform final evaluation and visualize results
|
||||
o = self.evaluate_inner(best_solution, ems, start_hour)
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(best_solution)
|
||||
|
||||
visualisiere_ergebnisse(parameter["gesamtlast"], parameter['pv_forecast'], parameter["strompreis_euro_pro_wh"], o,
|
||||
discharge_hours_bin, eautocharge_hours_float,
|
||||
parameter['temperature_forecast'], start_hour, self.prediction_hours,
|
||||
parameter["strompreis_euro_pro_wh"], extra_data=extra_data)
|
||||
|
||||
return {
|
||||
"discharge_hours_bin": discharge_hours_bin,
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": o,
|
||||
"eauto_obj": ems.eauto.to_dict(),
|
||||
"start_solution": best_solution,
|
||||
"spuelstart": spuelstart_int,
|
||||
"simulation_data": o
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user