PV Forecast mit URL möglich + persistenter Cache eingebaut

This commit is contained in:
Bla Bla 2024-02-25 15:12:10 +01:00
parent c5579e5796
commit 270eca6104
3 changed files with 106 additions and 52 deletions

View File

@ -45,7 +45,7 @@ class EnergieManagementSystem:
def reset(self):
self.akku.reset()
def simuliere(self):
def simuliere(self, start_stunde):
eigenverbrauch_wh_pro_stunde = []
netzeinspeisung_wh_pro_stunde = []
netzbezug_wh_pro_stunde = []
@ -53,10 +53,18 @@ class EnergieManagementSystem:
einnahmen_euro_pro_stunde = []
akku_soc_pro_stunde = []
for stunde in range(len(self.lastkurve_wh)):
ende = len(self.lastkurve_wh) # Berechnet das Ende basierend auf der Länge der Lastkurve
for stunde in range(start_stunde, ende):
# Anpassung, um sicherzustellen, dass Indizes korrekt sind
verbrauch = self.lastkurve_wh[stunde]
erzeugung = self.pv_prognose_wh[stunde]
strompreis = self.strompreis_cent_pro_wh[stunde]
strompreis = self.strompreis_cent_pro_wh[stunde] if stunde < len(self.strompreis_cent_pro_wh) else self.strompreis_cent_pro_wh[-1]
# for stunde in range(len(self.lastkurve_wh)):
# verbrauch = self.lastkurve_wh[stunde]
# erzeugung = self.pv_prognose_wh[stunde]
# strompreis = self.strompreis_cent_pro_wh[stunde]
stündlicher_netzbezug_wh = 0
stündliche_kosten_euro = 0

View File

@ -2,10 +2,11 @@ from flask import Flask, jsonify, request
import numpy as np
from datetime import datetime
from pprint import pprint
import json, sys
import json, sys, os
import requests, hashlib
class PVForecast:
class ForecastData:
class ForecastData:
def __init__(self, date_time, dc_power, ac_power, windspeed_10m, temperature):
self.date_time = date_time
self.dc_power = dc_power
@ -29,20 +30,24 @@ class PVForecast:
def get_temperature(self):
return self.temperature
def __init__(self, filepath):
self.filepath = filepath
class PVForecast:
def __init__(self, filepath=None, url=None, cache_dir='cache'):
self.meta = {}
self.forecast_data = []
self.load_data()
self.cache_dir = cache_dir
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
if filepath:
self.load_data_from_file(filepath)
elif url:
self.load_data_with_caching(url)
def load_data(self):
with open(self.filepath, 'r') as file:
data = json.load(file)
def process_data(self, data):
self.meta = data.get('meta', {})
values = data.get('values', [])[0]
for value in values:
# Erstelle eine ForecastData-Instanz für jeden Wert in der Liste
forecast = self.ForecastData(
forecast = ForecastData(
date_time=value.get('datetime'),
dc_power=value.get('dcPower'),
ac_power=value.get('power'),
@ -51,6 +56,45 @@ class PVForecast:
)
self.forecast_data.append(forecast)
def load_data_from_file(self, filepath):
with open(filepath, 'r') as file:
data = json.load(file)
self.process_data(data)
def load_data_from_url(self, url):
response = requests.get(url)
if response.status_code == 200:
data = response.json()
pprint(data)
self.process_data(data)
else:
print(f"Failed to load data from {url}. Status Code: {response.status_code}")
self.load_data_from_url(url)
def load_data_with_caching(self, url):
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url))
if os.path.exists(cache_file):
with open(cache_file, 'r') as file:
data = json.load(file)
print("Loading data from cache.")
else:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
with open(cache_file, 'w') as file:
json.dump(data, file)
print("Data fetched from URL and cached.")
else:
print(f"Failed to load data from {url}. Status Code: {response.status_code}")
return
self.process_data(data)
def generate_cache_filename(self, url):
# Erzeugt einen SHA-256 Hash der URL als Dateinamen
hash_object = hashlib.sha256(url.encode())
hex_dig = hash_object.hexdigest()
return f"cache_{hex_dig}.json"
def get_forecast_data(self):
return self.forecast_data

16
test.py
View File

@ -16,7 +16,7 @@ import random
import os
date = "2024-02-16"
date = "2024-02-26"
akku_size = 1000 # Wh
year_energy = 2000*1000 #Wh
einspeiseverguetung_cent_pro_wh = np.full(24, 7/1000.0)
@ -33,11 +33,13 @@ leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
pprint(leistung_haushalt.shape)
# PV Forecast
PVforecast = PVForecast(os.path.join(r'test_data', r'pvprognose.json'))
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
pv_forecast = PVforecast.get_forecast_for_date(date)
temperature_forecast = PVforecast.get_temperature_forecast_for_date(date)
pprint(pv_forecast.shape)
pprint(pv_forecast)
sys.exit()
# Strompreise
filepath = os.path.join (r'test_data', r'strompreis.json') # Pfad zur JSON-Datei anpassen
price_forecast = HourlyElectricityPriceForecast(filepath)
@ -45,11 +47,11 @@ specific_date_prices = price_forecast.get_prices_for_date(date)
# WP
leistung_wp = wp.simulate_24h(temperature_forecast)
# pprint(leistung_haushalt)
# pprint(leistung_wp)
# sys.exit()
# LOAD
load = leistung_haushalt + leistung_wp
# EMS / Stromzähler Bilanz
ems = EnergieManagementSystem(akku, load, pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
o = ems.simuliere()