mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Wärmepumpen Klasse für meine WP erzeugt (Achtung Standard)
PV Prognose aufsummieren der Strings eingebaut
This commit is contained in:
parent
8e7308ff8a
commit
2c0e355845
@ -3,7 +3,7 @@ from datetime import datetime, timedelta, timezone
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
|
||||
# Lade die .npz-Datei beim Start der Anwendung
|
||||
|
||||
class Waermepumpe:
|
||||
def __init__(self, max_heizleistung, prediction_hours):
|
||||
self.max_heizleistung = max_heizleistung
|
||||
@ -21,9 +21,11 @@ class Waermepumpe:
|
||||
return heizleistung
|
||||
|
||||
def elektrische_leistung_berechnen(self, aussentemperatur):
|
||||
heizleistung = self.heizleistung_berechnen(aussentemperatur)
|
||||
cop = self.cop_berechnen(aussentemperatur)
|
||||
return heizleistung / cop
|
||||
#heizleistung = self.heizleistung_berechnen(aussentemperatur)
|
||||
#cop = self.cop_berechnen(aussentemperatur)
|
||||
|
||||
return 1164 -77.8*aussentemperatur + 1.62*aussentemperatur**2.0
|
||||
#1253.0*np.math.pow(aussentemperatur,-0.0682)
|
||||
|
||||
def simulate_24h(self, temperaturen):
|
||||
leistungsdaten = []
|
||||
@ -37,6 +39,40 @@ class Waermepumpe:
|
||||
leistungsdaten.append(elektrische_leistung)
|
||||
return leistungsdaten
|
||||
|
||||
# # Lade die .npz-Datei beim Start der Anwendung
|
||||
# class Waermepumpe:
|
||||
# def __init__(self, max_heizleistung, prediction_hours):
|
||||
# self.max_heizleistung = max_heizleistung
|
||||
# self.prediction_hours = prediction_hours
|
||||
|
||||
# def cop_berechnen(self, aussentemperatur):
|
||||
# cop = 3.0 + (aussentemperatur-0) * 0.1
|
||||
# return max(cop, 1)
|
||||
|
||||
|
||||
# def heizleistung_berechnen(self, aussentemperatur):
|
||||
# #235.092 kWh + Temperatur * -11.645
|
||||
# heizleistung = (((235.0) + aussentemperatur*(-11.645))*1000)/24.0
|
||||
# heizleistung = min(self.max_heizleistung,heizleistung)
|
||||
# return heizleistung
|
||||
|
||||
# def elektrische_leistung_berechnen(self, aussentemperatur):
|
||||
# heizleistung = self.heizleistung_berechnen(aussentemperatur)
|
||||
# cop = self.cop_berechnen(aussentemperatur)
|
||||
# return heizleistung / cop
|
||||
|
||||
# def simulate_24h(self, temperaturen):
|
||||
# leistungsdaten = []
|
||||
|
||||
# # Überprüfen, ob das Temperaturarray die richtige Größe hat
|
||||
# if len(temperaturen) != self.prediction_hours:
|
||||
# raise ValueError("Das Temperaturarray muss genau "+str(self.prediction_hours)+" Einträge enthalten, einen für jede Stunde des Tages.")
|
||||
|
||||
# for temp in temperaturen:
|
||||
# elektrische_leistung = self.elektrische_leistung_berechnen(temp)
|
||||
# leistungsdaten.append(elektrische_leistung)
|
||||
# return leistungsdaten
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -52,17 +52,36 @@ class PVForecast:
|
||||
|
||||
def process_data(self, data):
|
||||
self.meta = data.get('meta', {})
|
||||
values = data.get('values', [])[0]
|
||||
for value in values:
|
||||
all_values = data.get('values', [])
|
||||
|
||||
# Berechnung der Summe der DC- und AC-Leistungen für jeden Zeitstempel
|
||||
for i in range(len(all_values[0])): # Annahme, dass alle Listen gleich lang sind
|
||||
sum_dc_power = sum(values[i]['dcPower'] for values in all_values)
|
||||
sum_ac_power = sum(values[i]['power'] for values in all_values)
|
||||
|
||||
# Erstellen eines ForecastData-Objekts mit den summierten Werten
|
||||
forecast = ForecastData(
|
||||
date_time=value.get('datetime'),
|
||||
dc_power=value.get('dcPower'),
|
||||
ac_power=value.get('power'),
|
||||
windspeed_10m=value.get('windspeed_10m'),
|
||||
temperature=value.get('temperature')
|
||||
date_time=all_values[0][i].get('datetime'),
|
||||
dc_power=sum_dc_power,
|
||||
ac_power=sum_ac_power,
|
||||
# Optional: Weitere Werte wie Windspeed und Temperature, falls benötigt
|
||||
windspeed_10m=all_values[0][i].get('windspeed_10m'),
|
||||
temperature=all_values[0][i].get('temperature')
|
||||
)
|
||||
|
||||
self.forecast_data.append(forecast)
|
||||
|
||||
# values = data.get('values', [])[0]
|
||||
# for value in values:
|
||||
# forecast = ForecastData(
|
||||
# date_time=value.get('datetime'),
|
||||
# dc_power=value.get('dcPower'),
|
||||
# ac_power=value.get('power'),
|
||||
# windspeed_10m=value.get('windspeed_10m'),
|
||||
# temperature=value.get('temperature')
|
||||
# )
|
||||
# self.forecast_data.append(forecast)
|
||||
|
||||
def load_data_from_file(self, filepath):
|
||||
with open(filepath, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
@ -3,7 +3,7 @@ from modules.class_load_container import Gesamtlast # Stellen Sie sicher, dass
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse, soc_eauto, discharge_hours, laden_moeglich):
|
||||
def visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse, soc_eauto, discharge_hours, laden_moeglich, temperature):
|
||||
# Last und PV-Erzeugung
|
||||
plt.figure(figsize=(14, 10))
|
||||
|
||||
@ -70,6 +70,16 @@ def visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecas
|
||||
ax1.axvspan(hour, hour+1, color='green',ymax=value, alpha=0.3, label='Lademöglichkeit' if hour == 0 else "")
|
||||
ax1.legend(loc='upper left')
|
||||
|
||||
ax1 = plt.subplot(3, 2, 6)
|
||||
ax1.plot(stunden, temperature, label='Temperatur °C', marker='x')
|
||||
|
||||
|
||||
ax2 = ax1.twinx()
|
||||
ax2.plot(stunden, leistung_wp, label='Wärmepumpe W', marker='x')
|
||||
plt.legend(loc='upper left')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
115
test.py
115
test.py
@ -37,7 +37,7 @@ discharge_array = np.full(prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1,
|
||||
laden_moeglich = np.full(prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||
#np.full(prediction_hours,1)
|
||||
eauto = EAuto(soc=10, capacity = 60000, power_charge = 7000, load_allowed = laden_moeglich)
|
||||
min_soc_eauto = 100
|
||||
min_soc_eauto = 10
|
||||
hohe_strafe = 10.0
|
||||
|
||||
|
||||
@ -60,8 +60,9 @@ gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
|
||||
# PV Forecast
|
||||
###############
|
||||
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
||||
PVforecast = PVForecast(prediction_hours = prediction_hours, url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||
PVforecast = PVForecast(prediction_hours = prediction_hours, url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
||||
|
||||
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
|
||||
|
||||
|
||||
@ -183,45 +184,46 @@ print("Start Lösung:", start_solution)
|
||||
|
||||
|
||||
|
||||
# Werkzeug-Setup
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
# # Werkzeug-Setup
|
||||
# creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
# creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
toolbox = base.Toolbox()
|
||||
# toolbox = base.Toolbox()
|
||||
|
||||
|
||||
|
||||
|
||||
toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
toolbox.register("attr_float", random.uniform, 0.0, 1.0)
|
||||
toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_bool,toolbox.attr_float), n=prediction_hours)
|
||||
# toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
# toolbox.register("attr_float", random.uniform, 0.0, 1.0)
|
||||
# toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_bool,toolbox.attr_float), n=prediction_hours)
|
||||
|
||||
start_individual = toolbox.individual()
|
||||
start_individual[:] = start_solution
|
||||
# start_individual = toolbox.individual()
|
||||
# start_individual[:] = start_solution
|
||||
|
||||
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||
# toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||
|
||||
toolbox.register("evaluate", evaluate)
|
||||
toolbox.register("mate", tools.cxTwoPoint)
|
||||
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
||||
toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
# toolbox.register("evaluate", evaluate)
|
||||
# toolbox.register("mate", tools.cxTwoPoint)
|
||||
# toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
||||
# toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize():
|
||||
population = toolbox.population(n=1000)
|
||||
population[0] = start_individual
|
||||
hof = tools.HallOfFame(1)
|
||||
# # Genetischer Algorithmus
|
||||
# def optimize():
|
||||
# population = toolbox.population(n=1000)
|
||||
# population[0] = start_individual
|
||||
# hof = tools.HallOfFame(1)
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats.register("avg", np.mean)
|
||||
stats.register("min", np.min)
|
||||
stats.register("max", np.max)
|
||||
# stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
# stats.register("avg", np.mean)
|
||||
# stats.register("min", np.min)
|
||||
# stats.register("max", np.max)
|
||||
|
||||
algorithms.eaMuPlusLambda(population, toolbox, 100, 200, cxpb=0.5, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaSimple(population, toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
return hof[0]
|
||||
# algorithms.eaMuPlusLambda(population, toolbox, 100, 200, cxpb=0.5, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
# #algorithms.eaSimple(population, toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
# return hof[0]
|
||||
|
||||
best_solution = optimize()
|
||||
# best_solution = optimize()
|
||||
best_solution = start_solution
|
||||
print("Beste Lösung:", best_solution)
|
||||
|
||||
#ems.set_akku_discharge_hours(best_solution)
|
||||
@ -232,7 +234,60 @@ print(soc_eauto)
|
||||
pprint(o)
|
||||
pprint(eauto.get_stuendlicher_soc())
|
||||
|
||||
visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o,soc_eauto,best_solution[0::2],best_solution[1::2] )
|
||||
|
||||
|
||||
|
||||
|
||||
# # Werkzeug-Setup
|
||||
# creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
# creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
# toolbox = base.Toolbox()
|
||||
|
||||
|
||||
|
||||
|
||||
# toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
# toolbox.register("attr_float", random.uniform, 0.0, 1.0)
|
||||
# toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_bool,toolbox.attr_float), n=prediction_hours)
|
||||
|
||||
# start_individual = toolbox.individual()
|
||||
# start_individual[:] = start_solution
|
||||
|
||||
# toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||
|
||||
# toolbox.register("evaluate", evaluate)
|
||||
# toolbox.register("mate", tools.cxTwoPoint)
|
||||
# toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
||||
# toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
# # Genetischer Algorithmus
|
||||
# def optimize():
|
||||
# population = toolbox.population(n=1000)
|
||||
# population[0] = start_individual
|
||||
# hof = tools.HallOfFame(1)
|
||||
|
||||
# stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
# stats.register("avg", np.mean)
|
||||
# stats.register("min", np.min)
|
||||
# stats.register("max", np.max)
|
||||
|
||||
# algorithms.eaMuPlusLambda(population, toolbox, 100, 200, cxpb=0.5, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
# #algorithms.eaSimple(population, toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
# return hof[0]
|
||||
|
||||
# best_solution = optimize()
|
||||
# print("Beste Lösung:", best_solution)
|
||||
|
||||
# #ems.set_akku_discharge_hours(best_solution)
|
||||
# o,eauto = evaluate_inner(best_solution)
|
||||
|
||||
# soc_eauto = eauto.get_stuendlicher_soc()
|
||||
# print(soc_eauto)
|
||||
# pprint(o)
|
||||
# pprint(eauto.get_stuendlicher_soc())
|
||||
|
||||
visualisiere_ergebnisse(gesamtlast,leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o,soc_eauto,best_solution[0::2],best_solution[1::2] , temperature_forecast)
|
||||
|
||||
|
||||
# for data in forecast.get_forecast_data():
|
||||
|
Loading…
x
Reference in New Issue
Block a user