mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Update class_load_corrector.py
initial clean up. translations, imports cleaned and sorted
This commit is contained in:
parent
8075515e8f
commit
2df409695a
@ -1,9 +1,14 @@
|
||||
import json,sys, os
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
|
||||
import mariadb
|
||||
# from sklearn.model_selection import train_test_split, GridSearchCV
|
||||
# from sklearn.ensemble import GradientBoostingRegressor
|
||||
# from xgboost import XGBRegressor
|
||||
@ -12,17 +17,14 @@ import matplotlib.pyplot as plt
|
||||
# from tensorflow.keras.layers import Dense, LSTM
|
||||
# from tensorflow.keras.optimizers import Adam
|
||||
# from sklearn.preprocessing import MinMaxScaler
|
||||
# from sklearn.metrics import mean_squared_error, r2_score
|
||||
import mariadb
|
||||
# from sqlalchemy import create_engine
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
# Fügen Sie den übergeordneten Pfad zum sys.path hinzu
|
||||
|
||||
# Add the parent directory to sys.path
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from config import *
|
||||
from modules.class_load import *
|
||||
|
||||
|
||||
class LoadPredictionAdjuster:
|
||||
def __init__(self, measured_data, predicted_data, load_forecast):
|
||||
self.measured_data = measured_data
|
||||
@ -34,41 +36,39 @@ class LoadPredictionAdjuster:
|
||||
self.weekday_diff = None
|
||||
self.weekend_diff = None
|
||||
|
||||
|
||||
def _remove_outliers(self, data, threshold=2):
|
||||
# Berechne den Z-Score der 'Last'-Daten
|
||||
# Calculate the Z-Score of the 'Last' data
|
||||
data['Z-Score'] = np.abs((data['Last'] - data['Last'].mean()) / data['Last'].std())
|
||||
# Filtere die Daten nach dem Schwellenwert
|
||||
# Filter the data based on the threshold
|
||||
filtered_data = data[data['Z-Score'] < threshold]
|
||||
return filtered_data.drop(columns=['Z-Score'])
|
||||
|
||||
|
||||
def _merge_data(self):
|
||||
# Konvertiere die Zeitspalte in beiden Datenrahmen zu datetime
|
||||
# Convert the time column in both DataFrames to datetime
|
||||
self.predicted_data['time'] = pd.to_datetime(self.predicted_data['time'])
|
||||
self.measured_data['time'] = pd.to_datetime(self.measured_data['time'])
|
||||
|
||||
# Stelle sicher, dass beide Zeitspalten dieselbe Zeitzone haben
|
||||
# Measured Data: Setze die Zeitzone auf UTC, falls es tz-naiv ist
|
||||
# Ensure both time columns have the same timezone
|
||||
if self.measured_data['time'].dt.tz is None:
|
||||
self.measured_data['time'] = self.measured_data['time'].dt.tz_localize('UTC')
|
||||
|
||||
# Predicted Data: Setze ebenfalls UTC und konvertiere anschließend in die lokale Zeitzone
|
||||
self.predicted_data['time'] = self.predicted_data['time'].dt.tz_localize('UTC').dt.tz_convert('Europe/Berlin')
|
||||
self.predicted_data['time'] = (
|
||||
self.predicted_data['time'].dt.tz_localize('UTC')
|
||||
.dt.tz_convert('Europe/Berlin')
|
||||
)
|
||||
self.measured_data['time'] = self.measured_data['time'].dt.tz_convert('Europe/Berlin')
|
||||
|
||||
# Optional: Entferne die Zeitzoneninformation, wenn du nur lokal arbeiten möchtest
|
||||
# Optionally: Remove timezone information if only working locally
|
||||
self.predicted_data['time'] = self.predicted_data['time'].dt.tz_localize(None)
|
||||
self.measured_data['time'] = self.measured_data['time'].dt.tz_localize(None)
|
||||
|
||||
# Jetzt kannst du den Merge durchführen
|
||||
# Now you can perform the merge
|
||||
merged_data = pd.merge(self.measured_data, self.predicted_data, on='time', how='inner')
|
||||
print(merged_data)
|
||||
merged_data['Hour'] = merged_data['time'].dt.hour
|
||||
merged_data['DayOfWeek'] = merged_data['time'].dt.dayofweek
|
||||
return merged_data
|
||||
|
||||
|
||||
def calculate_weighted_mean(self, train_period_weeks=9, test_period_weeks=1):
|
||||
self.merged_data = self._remove_outliers(self.merged_data)
|
||||
train_end_date = self.merged_data['time'].max() - pd.Timedelta(weeks=test_period_weeks)
|
||||
@ -77,8 +77,15 @@ class LoadPredictionAdjuster:
|
||||
test_start_date = train_end_date + pd.Timedelta(hours=1)
|
||||
test_end_date = test_start_date + pd.Timedelta(weeks=test_period_weeks) - pd.Timedelta(hours=1)
|
||||
|
||||
self.train_data = self.merged_data[(self.merged_data['time'] >= train_start_date) & (self.merged_data['time'] <= train_end_date)]
|
||||
self.test_data = self.merged_data[(self.merged_data['time'] >= test_start_date) & (self.merged_data['time'] <= test_end_date)]
|
||||
self.train_data = self.merged_data[
|
||||
(self.merged_data['time'] >= train_start_date) &
|
||||
(self.merged_data['time'] <= train_end_date)
|
||||
]
|
||||
|
||||
self.test_data = self.merged_data[
|
||||
(self.merged_data['time'] >= test_start_date) &
|
||||
(self.merged_data['time'] <= test_end_date)
|
||||
]
|
||||
|
||||
self.train_data['Difference'] = self.train_data['Last'] - self.train_data['Last Pred']
|
||||
|
||||
@ -142,67 +149,53 @@ class LoadPredictionAdjuster:
|
||||
daily_forecast = self.load_forecast.get_daily_stats(date_str)
|
||||
return daily_forecast[0][hour] if hour < len(daily_forecast[0]) else np.nan
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
# if __name__ == '__main__':
|
||||
# estimator = LastEstimator()
|
||||
# start_date = "2024-06-01"
|
||||
# end_date = "2024-08-01"
|
||||
# last_df = estimator.get_last(start_date, end_date)
|
||||
|
||||
# selected_columns = last_df[['timestamp', 'Last']]
|
||||
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')
|
||||
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')
|
||||
|
||||
# estimator = LastEstimator()
|
||||
# start_date = "2024-06-01"
|
||||
# end_date = "2024-08-01"
|
||||
# last_df = estimator.get_last(start_date, end_date)
|
||||
# # Drop rows with NaN values
|
||||
# cleaned_data = selected_columns.dropna()
|
||||
|
||||
# selected_columns = last_df[['timestamp', 'Last']]
|
||||
# selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')
|
||||
# selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')
|
||||
# print(cleaned_data)
|
||||
# # Create an instance of LoadForecast
|
||||
# lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000)
|
||||
|
||||
# # Drop rows with NaN values
|
||||
# cleaned_data = selected_columns.dropna()
|
||||
# # Initialize an empty DataFrame to hold the forecast data
|
||||
# forecast_list = []
|
||||
|
||||
# print(cleaned_data)
|
||||
# # Create an instance of LoadForecast
|
||||
# # Loop through each day in the date range
|
||||
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):
|
||||
# date_str = single_date.strftime('%Y-%m-%d')
|
||||
# daily_forecast = lf.get_daily_stats(date_str)
|
||||
# mean_values = daily_forecast[0] # Extract the mean values
|
||||
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
|
||||
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
|
||||
# forecast_list.append(daily_forecast_df)
|
||||
|
||||
# lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000)
|
||||
# # Concatenate all daily forecasts into a single DataFrame
|
||||
# forecast_df = pd.concat(forecast_list, ignore_index=True)
|
||||
|
||||
# # Initialize an empty DataFrame to hold the forecast data
|
||||
# forecast_list = []
|
||||
# # Create an instance of the LoadPredictionAdjuster class
|
||||
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
|
||||
|
||||
# # Loop through each day in the date range
|
||||
# for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):
|
||||
# date_str = single_date.strftime('%Y-%m-%d')
|
||||
# daily_forecast = lf.get_daily_stats(date_str)
|
||||
# mean_values = daily_forecast[0] # Extract the mean values
|
||||
# hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
|
||||
# daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
|
||||
# forecast_list.append(daily_forecast_df)
|
||||
# # Calculate the weighted mean differences
|
||||
# adjuster.calculate_weighted_mean()
|
||||
|
||||
# # Concatenate all daily forecasts into a single DataFrame
|
||||
# forecast_df = pd.concat(forecast_list, ignore_index=True)
|
||||
# # Adjust the predictions
|
||||
# adjuster.adjust_predictions()
|
||||
|
||||
# # Create an instance of the LoadPredictionAdjuster class
|
||||
# adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
|
||||
# # Plot the results
|
||||
# adjuster.plot_results()
|
||||
|
||||
# # Calculate the weighted mean differences
|
||||
# adjuster.calculate_weighted_mean()
|
||||
# # Evaluate the model
|
||||
# adjuster.evaluate_model()
|
||||
|
||||
# # Adjust the predictions
|
||||
# adjuster.adjust_predictions()
|
||||
|
||||
# # Plot the results
|
||||
# adjuster.plot_results()
|
||||
|
||||
# # Evaluate the model
|
||||
# adjuster.evaluate_model()
|
||||
|
||||
# # Predict the next x hours
|
||||
# future_predictions = adjuster.predict_next_hours(48)
|
||||
# print(future_predictions)
|
||||
# # Predict the next x hours
|
||||
# future_predictions = adjuster.predict_next_hours(48)
|
||||
# print(future_predictions)
|
||||
|
Loading…
x
Reference in New Issue
Block a user