mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-16 15:35:15 +00:00
mypy, req
This commit is contained in:
parent
e0bdbdcb81
commit
3121490a23
@ -13,4 +13,4 @@ pendulum==3.0.0
|
||||
platformdirs==4.3.6
|
||||
pvlib==0.11.1
|
||||
pydantic==2.10.4
|
||||
statsmodels==0.14.4
|
||||
statsmodels==0.14.4
|
||||
|
@ -12,13 +12,13 @@ import numpy as np
|
||||
import requests
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import Field, ValidationError
|
||||
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
||||
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.prediction.elecpriceabc import ElecPriceDataRecord, ElecPriceProvider
|
||||
from akkudoktoreos.utils.cacheutil import cache_in_file
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
@ -122,22 +122,22 @@ class ElecPriceAkkudoktor(ElecPriceProvider):
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
return akkudoktor_data
|
||||
|
||||
def cap_outliers(data: np.ndarray, sigma: int = 2) -> np.ndarray:
|
||||
mean = data.mean()
|
||||
std = data.std()
|
||||
lower_bound = mean - sigma * std
|
||||
upper_bound = mean + sigma * std
|
||||
capped_data = data.clip(lower=lower_bound, upper=upper_bound)
|
||||
return capped_data
|
||||
def _cap_outliers(self, data: np.ndarray, sigma: int = 2) -> np.ndarray:
|
||||
mean = data.mean()
|
||||
std = data.std()
|
||||
lower_bound = mean - sigma * std
|
||||
upper_bound = mean + sigma * std
|
||||
capped_data = data.clip(min=lower_bound, max=upper_bound)
|
||||
return capped_data
|
||||
|
||||
def predict_ets(
|
||||
history: np.ndarray, seasonal_periods: int, prediction_hours: int
|
||||
) -> np.ndarray:
|
||||
clean_history = cap_outliers(history)
|
||||
model = ExponentialSmoothing(
|
||||
clean_history, seasonal="add", seasonal_periods=seasonal_periods
|
||||
).fit()
|
||||
return model.forecast(prediction_hours)
|
||||
def _predict_ets(
|
||||
self, history: np.ndarray, seasonal_periods: int, prediction_hours: int
|
||||
) -> np.ndarray:
|
||||
clean_history = self._cap_outliers(history)
|
||||
model = ExponentialSmoothing(
|
||||
clean_history, seasonal="add", seasonal_periods=seasonal_periods
|
||||
).fit()
|
||||
return model.forecast(prediction_hours)
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
"""Update forecast data in the ElecPriceDataRecord format.
|
||||
|
Loading…
x
Reference in New Issue
Block a user