backport visualize v3 (#279)

* backport visualize v3

* test backport

* compare file

* old test files removed
This commit is contained in:
Normann 2024-12-24 13:11:15 +01:00 committed by GitHub
parent 2a526aa228
commit 343cb0e138
7 changed files with 566 additions and 397 deletions

View File

@ -26,7 +26,6 @@ from akkudoktoreos.prediction.self_consumption_probability import (
self_consumption_probability_interpolator,
)
from akkudoktoreos.utils.utils import NumpyEncoder
from akkudoktoreos.visualize import visualisiere_ergebnisse
class OptimizationParameters(BaseModel):
@ -596,20 +595,23 @@ class optimization_problem:
ac_charge, dc_charge, discharge = self.decode_charge_discharge(discharge_hours_bin)
# Visualize the results
visualisiere_ergebnisse(
parameters.ems.gesamtlast,
parameters.ems.pv_prognose_wh,
parameters.ems.strompreis_euro_pro_wh,
o,
ac_charge,
dc_charge,
discharge,
parameters.temperature_forecast,
start_hour,
einspeiseverguetung_euro_pro_wh,
config=self._config,
extra_data=extra_data,
from akkudoktoreos.utils.visualize import ( # import here to prevent circular import
prepare_visualize,
)
visualize = {
"ac_charge": ac_charge.tolist(),
"dc_charge": dc_charge.tolist(),
"discharge_allowed": discharge.tolist(),
"eautocharge_hours_float": eautocharge_hours_float,
"result": o,
"eauto_obj": ems.ev,
"start_solution": start_solution,
"spuelstart": washingstart_int,
"extra_data": extra_data,
}
prepare_visualize(parameters, visualize, config=self._config, start_hour=start_hour)
return OptimizeResponse(
**{
"ac_charge": ac_charge,

View File

@ -0,0 +1,510 @@
import os
from collections.abc import Sequence
from typing import Callable, Optional, Union
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from akkudoktoreos.config import AppConfig
from akkudoktoreos.optimization.genetic import OptimizationParameters
class VisualizationReport:
def __init__(self, config: AppConfig, filename: str = "visualization_results.pdf") -> None:
# Initialize the report with a given filename and empty groups
self.filename = filename
self.groups: list[list[Callable[[], None]]] = [] # Store groups of charts
self.current_group: list[
Callable[[], None]
] = [] # Store current group of charts being created
self.config = config
self.pdf_pages = PdfPages(filename, metadata={}) # Initialize PdfPages without metadata
def add_chart_to_group(self, chart_func: Callable[[], None]) -> None:
"""Add a chart function to the current group."""
self.current_group.append(chart_func)
def finalize_group(self) -> None:
"""Finalize the current group and prepare for a new group."""
if self.current_group: # Check if current group has charts
self.groups.append(self.current_group) # Add current group to groups
else:
print("Finalizing an empty group!") # Warn if group is empty
self.current_group = [] # Reset current group for new charts
def _initialize_pdf(self) -> None:
"""Create the output directory if it doesn't exist and initialize the PDF."""
output_dir = self.config.working_dir / self.config.directories.output
# If self.filename is already a valid path, use it; otherwise, combine it with output_dir
if os.path.isabs(self.filename):
output_file = self.filename
else:
output_dir.mkdir(parents=True, exist_ok=True)
output_file = os.path.join(output_dir, self.filename)
self.pdf_pages = PdfPages(
output_file, metadata={}
) # Re-initialize PdfPages without metadata
def _save_group_to_pdf(self, group: list[Callable[[], None]]) -> None:
"""Save a group of charts to the PDF."""
fig_count = len(group) # Number of charts in the group
if fig_count == 0:
print("Attempted to save an empty group to PDF!") # Warn if group is empty
return # Prevent saving an empty group
# Create a figure layout based on the number of charts
if fig_count == 3:
# Layout for three charts: 1 full-width on top, 2 below
fig = plt.figure(figsize=(14, 10)) # Set a larger figure size
ax1 = fig.add_subplot(2, 1, 1) # Full-width subplot
ax2 = fig.add_subplot(2, 2, 3) # Bottom left subplot
ax3 = fig.add_subplot(2, 2, 4) # Bottom right subplot
# Store axes in a list for easy access
axs = [ax1, ax2, ax3]
else:
# Dynamic layout for any other number of charts
cols = 2 if fig_count > 1 else 1 # Determine number of columns
rows = (fig_count // 2) + (fig_count % 2) # Calculate required rows
fig, axs = plt.subplots(rows, cols, figsize=(14, 7 * rows)) # Create subplots
# If axs is a 2D array of axes, flatten it into a 1D list
# if isinstance(axs, np.ndarray):
axs = list(np.array(axs).reshape(-1))
# Draw each chart in the corresponding axes
for idx, chart_func in enumerate(group):
plt.sca(axs[idx]) # Set current axes
chart_func() # Call the chart function to draw
# Hide any unused axes
for idx in range(fig_count, len(axs)):
axs[idx].set_visible(False) # Hide unused axes
self.pdf_pages.savefig(fig) # Save the figure to the PDF
plt.close(fig) # Close the figure to free up memory
def create_line_chart(
self,
start_hour: Optional[int],
y_list: list[Union[np.ndarray, list[float]]],
title: str,
xlabel: str,
ylabel: str,
labels: Optional[list[str]] = None,
markers: Optional[list[str]] = None,
line_styles: Optional[list[str]] = None,
) -> None:
"""Create a line chart and add it to the current group."""
def chart() -> None:
nonlocal start_hour # Allow modifying `x` within the nested function
if start_hour is None:
start_hour = 0
first_element = y_list[0]
x: np.ndarray
# Case 1: y_list contains np.ndarray elements
if isinstance(first_element, np.ndarray):
x = np.arange(
start_hour, start_hour + len(first_element)
) # Start at x and extend by ndarray length
# Case 2: y_list contains float elements (1D list)
elif isinstance(first_element, float):
x = np.arange(
start_hour, start_hour + len(y_list)
) # Start at x and extend by list length
# Case 3: y_list is a nested list of floats
elif isinstance(first_element, list) and all(
isinstance(i, float) for i in first_element
):
max_len = max(len(sublist) for sublist in y_list)
x = np.arange(
start_hour, start_hour + max_len
) # Start at x and extend by max sublist length
else:
print(f"Unsupported y_list structure: {type(y_list)}, {y_list}")
raise TypeError(
"y_list elements must be np.ndarray, float, or a nested list of floats"
)
for idx, y_data in enumerate(y_list):
label = labels[idx] if labels else None # Chart label
marker = markers[idx] if markers and idx < len(markers) else "o" # Marker style
line_style = (
line_styles[idx] if line_styles and idx < len(line_styles) else "-"
) # Line style
plt.plot(x, y_data, label=label, marker=marker, linestyle=line_style) # Plot line
plt.title(title) # Set title
plt.xlabel(xlabel) # Set x-axis label
plt.ylabel(ylabel) # Set y-axis label
if labels:
plt.legend() # Show legend if labels are provided
plt.grid(True) # Show grid
plt.xlim(x[0] - 0.5, x[-1] + 0.5) # Adjust x-limits
self.add_chart_to_group(chart) # Add chart function to current group
def create_scatter_plot(
self,
x: np.ndarray,
y: np.ndarray,
title: str,
xlabel: str,
ylabel: str,
c: Optional[np.ndarray] = None,
) -> None:
"""Create a scatter plot and add it to the current group."""
def chart() -> None:
scatter = plt.scatter(x, y, c=c, cmap="viridis") # Create scatter plot
plt.title(title) # Set title
plt.xlabel(xlabel) # Set x-axis label
plt.ylabel(ylabel) # Set y-axis label
if c is not None:
plt.colorbar(scatter, label="Constraint") # Add colorbar if color data is provided
plt.grid(True) # Show grid
self.add_chart_to_group(chart) # Add chart function to current group
def create_bar_chart(
self,
labels: list[str],
values_list: Sequence[Union[int, float, list[Union[int, float]]]],
title: str,
ylabel: str,
xlabels: Optional[list[str]] = None,
label_names: Optional[list[str]] = None,
colors: Optional[list[str]] = None,
bar_width: float = 0.35,
bottom: Optional[int] = None,
) -> None:
"""Create a bar chart and add it to the current group."""
def chart() -> None:
num_groups = len(values_list) # Number of data groups
num_bars = len(labels) # Number of bars (categories)
# Calculate the positions for each bar group on the x-axis
x = np.arange(num_bars) # x positions for bars
offset = np.linspace(
-bar_width * (num_groups - 1) / 2, bar_width * (num_groups - 1) / 2, num_groups
) # Bar offsets
for i, values in enumerate(values_list):
bottom_use = None
if bottom == i + 1: # Set bottom if specified
bottom_use = 1
color = colors[i] if colors and i < len(colors) else None # Bar color
label_name = label_names[i] if label_names else None # Bar label
plt.bar(
x + offset[i],
values,
bar_width,
label=label_name,
color=color,
zorder=2,
alpha=0.6,
bottom=bottom_use,
) # Create bar
if xlabels:
plt.xticks(x, labels) # Add custom labels to the x-axis
plt.title(title) # Set title
plt.ylabel(ylabel) # Set y-axis label
if colors and label_names:
plt.legend() # Show legend if colors are provided
plt.grid(True, zorder=0) # Show grid in the background
plt.xlim(-0.5, len(labels) - 0.5) # Set x-axis limits
self.add_chart_to_group(chart) # Add chart function to current group
def create_violin_plot(
self, data_list: list[np.ndarray], labels: list[str], title: str, xlabel: str, ylabel: str
) -> None:
"""Create a violin plot and add it to the current group."""
def chart() -> None:
plt.violinplot(data_list, showmeans=True, showmedians=True) # Create violin plot
plt.xticks(np.arange(1, len(labels) + 1), labels) # Set x-ticks and labels
plt.title(title) # Set title
plt.xlabel(xlabel) # Set x-axis label
plt.ylabel(ylabel) # Set y-axis label
plt.grid(True) # Show grid
self.add_chart_to_group(chart) # Add chart function to current group
def generate_pdf(self) -> None:
"""Generate the PDF report with all the added chart groups."""
self._initialize_pdf() # Initialize the PDF
for group in self.groups:
self._save_group_to_pdf(group) # Save each group to the PDF
self.pdf_pages.close() # Close the PDF to finalize the report
def prepare_visualize(
parameters: OptimizationParameters,
results: dict,
config: AppConfig,
filename: str = "visualization_results_new.pdf",
start_hour: Optional[int] = 0,
) -> None:
report = VisualizationReport(config, filename)
# Group 1:
report.create_line_chart(
None,
[parameters.ems.gesamtlast],
title="Load Profile",
xlabel="Hours",
ylabel="Load (Wh)",
labels=["Total Load (Wh)"],
markers=["s"],
line_styles=["-"],
)
report.create_line_chart(
None,
[parameters.ems.pv_prognose_wh],
title="PV Forecast",
xlabel="Hours",
ylabel="PV Generation (Wh)",
)
report.create_line_chart(
None,
[np.full(len(parameters.ems.gesamtlast), parameters.ems.einspeiseverguetung_euro_pro_wh)],
title="Remuneration",
xlabel="Hours",
ylabel="€/Wh",
)
if parameters.temperature_forecast:
report.create_line_chart(
None,
[parameters.temperature_forecast],
title="Temperature Forecast",
xlabel="Hours",
ylabel="°C",
)
report.finalize_group()
# Group 2:
report.create_line_chart(
start_hour,
[
results["result"]["Last_Wh_pro_Stunde"],
results["result"]["Home_appliance_wh_per_hour"],
results["result"]["Netzeinspeisung_Wh_pro_Stunde"],
results["result"]["Netzbezug_Wh_pro_Stunde"],
results["result"]["Verluste_Pro_Stunde"],
],
title="Energy Flow per Hour",
xlabel="Hours",
ylabel="Energy (Wh)",
labels=[
"Load (Wh)",
"Household Device (Wh)",
"Grid Feed-in (Wh)",
"Grid Consumption (Wh)",
"Losses (Wh)",
],
markers=["o", "o", "x", "^", "^"],
line_styles=["-", "--", ":", "-.", "-"],
)
report.finalize_group()
# Group 3:
report.create_line_chart(
start_hour,
[results["result"]["akku_soc_pro_stunde"], results["result"]["EAuto_SoC_pro_Stunde"]],
title="Battery SOC",
xlabel="Hours",
ylabel="%",
labels=[
"Battery SOC (%)",
"Electric Vehicle SOC (%)",
],
markers=["o", "x"],
)
report.create_line_chart(
None,
[parameters.ems.strompreis_euro_pro_wh],
title="Electricity Price",
xlabel="Hours",
ylabel="Price (€/Wh)",
)
report.create_bar_chart(
list(str(i) for i in range(len(results["ac_charge"]))),
[results["ac_charge"], results["dc_charge"], results["discharge_allowed"]],
title="AC/DC Charging and Discharge Overview",
ylabel="Relative Power (0-1) / Discharge (0 or 1)",
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
colors=["blue", "green", "red"],
bottom=3,
)
report.finalize_group()
# Group 4:
report.create_line_chart(
start_hour,
[
results["result"]["Kosten_Euro_pro_Stunde"],
results["result"]["Einnahmen_Euro_pro_Stunde"],
],
title="Financial Balance per Hour",
xlabel="Hours",
ylabel="Euro",
labels=["Costs", "Revenue"],
)
extra_data = results["extra_data"]
report.create_scatter_plot(
extra_data["verluste"],
extra_data["bilanz"],
title="",
xlabel="losses",
ylabel="balance",
c=extra_data["nebenbedingung"],
)
# Example usage
values_list = [
[
results["result"]["Gesamtkosten_Euro"],
results["result"]["Gesamteinnahmen_Euro"],
results["result"]["Gesamtbilanz_Euro"],
]
]
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
report.create_bar_chart(
labels=labels,
values_list=values_list,
title="Financial Overview",
ylabel="Euro",
xlabels=["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"],
)
report.finalize_group()
# Group 1: Scatter plot of losses vs balance with color-coded constraints
f1 = np.array(extra_data["verluste"]) # Losses
f2 = np.array(extra_data["bilanz"]) # Balance
n1 = np.array(extra_data["nebenbedingung"]) # Constraints
# Filter data where 'nebenbedingung' < 0.01
filtered_indices = n1 < 0.01
filtered_losses = f1[filtered_indices]
filtered_balance = f2[filtered_indices]
# Group 2: Violin plot for filtered losses
if filtered_losses.size > 0:
report.create_violin_plot(
data_list=[filtered_losses], # Data for filtered losses
labels=["Filtered Losses"], # Label for the violin plot
title="Violin Plot for Filtered Losses (Constraint < 0.01)",
xlabel="Losses",
ylabel="Values",
)
else:
print("No data available for filtered losses violin plot (Constraint < 0.01)")
# Group 3: Violin plot for filtered balance
if filtered_balance.size > 0:
report.create_violin_plot(
data_list=[filtered_balance], # Data for filtered balance
labels=["Filtered Balance"], # Label for the violin plot
title="Violin Plot for Filtered Balance (Constraint < 0.01)",
xlabel="Balance",
ylabel="Values",
)
else:
print("No data available for filtered balance violin plot (Constraint < 0.01)")
if filtered_balance.size > 0 or filtered_losses.size > 0:
report.finalize_group()
# Generate the PDF report
report.generate_pdf()
if __name__ == "__main__":
# Example usage
from akkudoktoreos.config import get_working_dir, load_config
working_dir = get_working_dir()
config = load_config(working_dir)
report = VisualizationReport(config=config, filename="example_report.pdf")
x_hours = 0 # Define x-axis start values (e.g., hours)
# Group 1: Adding charts to be displayed on the same page
report.create_line_chart(
x_hours,
[np.array([10, 20, 30, 40])],
title="Load Profile",
xlabel="Hours",
ylabel="Load (Wh)",
)
report.create_line_chart(
x_hours,
[np.array([5, 15, 25, 35])],
title="PV Forecast",
xlabel="Hours",
ylabel="PV Generation (Wh)",
)
report.create_line_chart(
x_hours,
[np.array([5, 15, 25, 35])],
title="PV Forecast",
xlabel="Hours",
ylabel="PV Generation (Wh)",
)
# Note: If there are only 3 charts per page, the first is as wide as the page
report.finalize_group() # Finalize the first group of charts
# Group 2: Adding more charts to be displayed on another page
report.create_line_chart(
x_hours,
[np.array([0.2, 0.25, 0.3, 0.35])],
title="Electricity Price",
xlabel="Hours",
ylabel="Price (€/Wh)",
)
report.create_bar_chart(
["Costs", "Revenue", "Balance"],
[[500.0], [600.0], [100.0]],
title="Financial Overview",
ylabel="Euro",
label_names=["AC Charging (relative)", "DC Charging (relative)", "Discharge Allowed"],
colors=["red", "green", "blue"],
)
report.create_scatter_plot(
np.array([5, 6, 7, 8]),
np.array([100, 200, 150, 250]),
title="Scatter Plot",
xlabel="Losses",
ylabel="Balance",
c=np.array([0.1, 0.2, 0.3, 0.4]),
)
report.finalize_group() # Finalize the second group of charts
# Group 3: Adding a violin plot
data = [np.random.normal(0, std, 100) for std in range(1, 5)] # Example data for violin plot
report.create_violin_plot(
data,
labels=["Group 1", "Group 2", "Group 3", "Group 4"],
title="Violin Plot",
xlabel="Groups",
ylabel="Values",
)
data = [np.random.normal(0, 1, 100)] # Example data for violin plot
report.create_violin_plot(
data, labels=["Group 1"], title="Violin Plot", xlabel="Group", ylabel="Values"
)
report.finalize_group() # Finalize the third group of charts
# Generate the PDF report
report.generate_pdf()

View File

@ -1,350 +0,0 @@
# Set the backend for matplotlib to Agg
from typing import Any, Optional
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.backends.backend_pdf import PdfPages
from akkudoktoreos.config import AppConfig, SetupIncomplete
matplotlib.use("Agg")
def visualisiere_ergebnisse(
gesamtlast: list[float],
pv_forecast: list[float],
strompreise: list[float],
ergebnisse: dict[str, Any],
ac: np.ndarray, # AC charging allowed
dc: np.ndarray, # DC charging allowed
discharge: np.ndarray, # Discharge allowed
temperature: Optional[list[float]],
start_hour: int,
einspeiseverguetung_euro_pro_wh: np.ndarray,
config: AppConfig,
filename: str = "visualization_results.pdf",
extra_data: Optional[dict[str, Any]] = None,
) -> None:
#####################
# 24-hour visualization
#####################
output_dir = config.working_dir / config.directories.output
if not output_dir.is_dir():
raise SetupIncomplete(f"Output path does not exist: {output_dir}.")
output_file = output_dir.joinpath(filename)
with PdfPages(output_file) as pdf:
# Load and PV generation
plt.figure(figsize=(14, 14))
plt.subplot(3, 3, 1)
hours = np.arange(0, config.eos.prediction_hours)
gesamtlast_array = np.array(gesamtlast)
# Plot individual loads
plt.plot(hours, gesamtlast_array, label="Load (Wh)", marker="o")
# Calculate and plot total load
plt.plot(
hours,
gesamtlast_array,
label="Total Load (Wh)",
marker="o",
linewidth=2,
linestyle="--",
)
plt.xlabel("Hour")
plt.ylabel("Load (Wh)")
plt.title("Load Profiles")
plt.grid(True)
plt.legend()
# PV forecast
plt.subplot(3, 2, 3)
plt.plot(hours, pv_forecast, label="PV Generation (Wh)", marker="x")
plt.title("PV Forecast")
plt.xlabel("Hour of the Day")
plt.ylabel("Wh")
plt.legend()
plt.grid(True)
# Feed-in remuneration
plt.subplot(3, 2, 4)
plt.plot(
hours,
einspeiseverguetung_euro_pro_wh,
label="Remuneration (€/Wh)",
marker="x",
)
plt.title("Remuneration")
plt.xlabel("Hour of the Day")
plt.ylabel("€/Wh")
plt.legend()
plt.grid(True)
# Temperature forecast
if temperature is not None:
plt.subplot(3, 2, 5)
plt.title("Temperature Forecast (°C)")
plt.plot(hours, temperature, label="Temperature (°C)", marker="x")
plt.xlabel("Hour of the Day")
plt.ylabel("°C")
plt.legend()
plt.grid(True)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
#####################
# Start hour visualization
#####################
plt.figure(figsize=(14, 10))
hours = np.arange(start_hour, config.eos.prediction_hours)
# Energy flow, grid feed-in, and grid consumption
plt.subplot(3, 2, 1)
# Plot with transparency (alpha) and different linestyles
plt.plot(
hours,
ergebnisse["Last_Wh_pro_Stunde"],
label="Load (Wh)",
marker="o",
linestyle="-",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Home_appliance_wh_per_hour"],
label="Household Device (Wh)",
marker="o",
linestyle="--",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Netzeinspeisung_Wh_pro_Stunde"],
label="Grid Feed-in (Wh)",
marker="x",
linestyle=":",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Netzbezug_Wh_pro_Stunde"],
label="Grid Consumption (Wh)",
marker="^",
linestyle="-.",
alpha=0.8,
)
plt.plot(
hours,
ergebnisse["Verluste_Pro_Stunde"],
label="Losses (Wh)",
marker="^",
linestyle="-",
alpha=0.8,
)
# Title and labels
plt.title("Energy Flow per Hour")
plt.xlabel("Hour")
plt.ylabel("Energy (Wh)")
# Show legend with a higher number of columns to avoid overlap
plt.legend(ncol=2)
# Electricity prices
hours_p = np.arange(0, len(strompreise))
plt.subplot(3, 2, 3)
plt.plot(
hours_p,
strompreise,
label="Electricity Price (€/Wh)",
color="purple",
marker="s",
)
plt.title("Electricity Prices")
plt.xlabel("Hour of the Day")
plt.ylabel("Price (€/Wh)")
plt.legend()
plt.grid(True)
# State of charge for batteries
plt.subplot(3, 2, 2)
plt.plot(hours, ergebnisse["akku_soc_pro_stunde"], label="PV Battery (%)", marker="x")
plt.plot(
hours,
ergebnisse["EAuto_SoC_pro_Stunde"],
label="E-Car Battery (%)",
marker="x",
)
plt.legend(loc="upper left", bbox_to_anchor=(1, 1)) # Place legend outside the plot
plt.grid(True, which="both", axis="x") # Grid for every hour
# Plot for AC, DC charging, and Discharge status using bar charts
ax1 = plt.subplot(3, 2, 5)
hours = np.arange(0, config.eos.prediction_hours)
# Plot AC charging as bars (relative values between 0 and 1)
plt.bar(hours, ac, width=0.4, label="AC Charging (relative)", color="blue", alpha=0.6)
# Plot DC charging as bars (relative values between 0 and 1)
plt.bar(
hours + 0.4, dc, width=0.4, label="DC Charging (relative)", color="green", alpha=0.6
)
# Plot Discharge as bars (0 or 1, binary values)
plt.bar(
hours,
discharge,
width=0.4,
label="Discharge Allowed",
color="red",
alpha=0.6,
bottom=np.maximum(ac, dc),
)
# Configure the plot
ax1.legend(loc="upper left")
ax1.set_xlim(0, config.eos.prediction_hours)
ax1.set_xlabel("Hour")
ax1.set_ylabel("Relative Power (0-1) / Discharge (0 or 1)")
ax1.set_title("AC/DC Charging and Discharge Overview")
ax1.grid(True)
hours = np.arange(start_hour, config.eos.prediction_hours)
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the current figure to free up memory
# Financial overview
fig, axs = plt.subplots(1, 2, figsize=(14, 10)) # Create a 1x2 grid of subplots
total_costs = ergebnisse["Gesamtkosten_Euro"]
total_revenue = ergebnisse["Gesamteinnahmen_Euro"]
total_balance = ergebnisse["Gesamtbilanz_Euro"]
losses = ergebnisse["Gesamt_Verluste"]
# Costs and revenues per hour on the first axis (axs[0])
costs = ergebnisse["Kosten_Euro_pro_Stunde"]
revenues = ergebnisse["Einnahmen_Euro_pro_Stunde"]
# Plot costs
axs[0].plot(
hours,
costs,
label="Costs (Euro)",
marker="o",
color="red",
)
# Annotate costs
for hour, value in enumerate(costs):
if value is None or np.isnan(value):
value = 0
axs[0].annotate(
f"{value:.2f}",
(hour, value),
textcoords="offset points",
xytext=(0, 5),
ha="center",
fontsize=8,
color="red",
)
# Plot revenues
axs[0].plot(
hours,
revenues,
label="Revenue (Euro)",
marker="x",
color="green",
)
# Annotate revenues
for hour, value in enumerate(revenues):
if value is None or np.isnan(value):
value = 0
axs[0].annotate(
f"{value:.2f}",
(hour, value),
textcoords="offset points",
xytext=(0, 5),
ha="center",
fontsize=8,
color="green",
)
# Title and labels
axs[0].set_title("Financial Balance per Hour")
axs[0].set_xlabel("Hour")
axs[0].set_ylabel("Euro")
axs[0].legend()
axs[0].grid(True)
# Summary of finances on the second axis (axs[1])
labels = ["Total Costs [€]", "Total Revenue [€]", "Total Balance [€]"]
values = [total_costs, total_revenue, total_balance]
colors = ["red" if value > 0 else "green" for value in values]
axs[1].bar(labels, values, color=colors)
axs[1].set_title("Financial Overview")
axs[1].set_ylabel("Euro")
# Second axis (ax2) for losses, shared with axs[1]
ax2 = axs[1].twinx()
ax2.bar("Total Losses", losses, color="blue")
ax2.set_ylabel("Losses [Wh]", color="blue")
ax2.tick_params(axis="y", labelcolor="blue")
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
# Additional data visualization if provided
if extra_data is not None:
plt.figure(figsize=(14, 10))
plt.subplot(1, 2, 1)
f1 = np.array(extra_data["verluste"])
f2 = np.array(extra_data["bilanz"])
n1 = np.array(extra_data["nebenbedingung"])
scatter = plt.scatter(f1, f2, c=n1, cmap="viridis")
# Add color legend
plt.colorbar(scatter, label="Constraint")
pdf.savefig() # Save the complete figure to the PDF
plt.close() # Close the figure
plt.figure(figsize=(14, 10))
filtered_losses = np.array(
[
v
for v, n in zip(extra_data["verluste"], extra_data["nebenbedingung"])
if n < 0.01
]
)
filtered_balance = np.array(
[b for b, n in zip(extra_data["bilanz"], extra_data["nebenbedingung"]) if n < 0.01]
)
if filtered_losses.size != 0:
best_loss = min(filtered_losses)
worst_loss = max(filtered_losses)
best_balance = min(filtered_balance)
worst_balance = max(filtered_balance)
data = [filtered_losses, filtered_balance]
labels = ["Losses", "Balance"]
# Create plots
fig, axs = plt.subplots(
1, 2, figsize=(10, 6), sharey=False
) # Two subplots, separate y-axes
# First violin plot for losses
axs[0].violinplot(data[0], positions=[1], showmeans=True, showmedians=True)
axs[0].set(xticks=[1], xticklabels=["Losses"])
# Second violin plot for balance
axs[1].violinplot(data[1], positions=[1], showmeans=True, showmedians=True)
axs[1].set(xticks=[1], xticklabels=["Balance"])
# Fine-tuning
plt.tight_layout()
pdf.savefig() # Save the current figure state to the PDF
plt.close() # Close the figure

View File

@ -11,6 +11,7 @@ from akkudoktoreos.optimization.genetic import (
OptimizeResponse,
optimization_problem,
)
from akkudoktoreos.utils.visualize import prepare_visualize
DIR_TESTDATA = Path(__file__).parent / "testdata"
@ -67,16 +68,12 @@ def test_optimize(
visualize_filename = str((DIR_TESTDATA / f"new_{fn_out}").with_suffix(".pdf"))
def visualize_to_file(*args, **kwargs):
from akkudoktoreos.visualize import visualisiere_ergebnisse
# Write test output pdf to file, so we can look at it manually
kwargs["filename"] = visualize_filename
return visualisiere_ergebnisse(*args, **kwargs)
with patch(
"akkudoktoreos.optimization.genetic.visualisiere_ergebnisse", side_effect=visualize_to_file
) as visualisiere_ergebnisse_patch:
"akkudoktoreos.utils.visualize.prepare_visualize",
side_effect=lambda parameters, results, *args, **kwargs: prepare_visualize(
parameters, results, filename=visualize_filename, **kwargs
),
) as prepare_visualize_patch:
# Call the optimization function
ergebnis = opt_class.optimierung_ems(
parameters=input_data, start_hour=start_hour, ngen=ngen
@ -95,4 +92,4 @@ def test_optimize(
compare_dict(ergebnis.model_dump(), expected_result.model_dump())
# The function creates a visualization result PDF as a side-effect.
visualisiere_ergebnisse_patch.assert_called_once()
prepare_visualize_patch.assert_called_once()

View File

@ -1,32 +1,42 @@
import json
import os
import subprocess
from pathlib import Path
import pytest
from matplotlib.testing.compare import compare_images
from akkudoktoreos.config import AppConfig
from akkudoktoreos.visualize import visualisiere_ergebnisse
from akkudoktoreos.config import get_working_dir, load_config
filename = "example_report.pdf"
working_dir = get_working_dir()
config = load_config(working_dir)
output_dir = config.working_dir / config.directories.output
# If self.filename is already a valid path, use it; otherwise, combine it with output_dir
if os.path.isabs(filename):
output_file = filename
else:
output_dir.mkdir(parents=True, exist_ok=True)
output_file = os.path.join(output_dir, filename)
DIR_TESTDATA = Path(__file__).parent / "testdata"
DIR_IMAGEDATA = DIR_TESTDATA / "images"
reference_file = DIR_TESTDATA / "test_example_report.pdf"
@pytest.mark.parametrize(
"fn_in, fn_out, fn_out_base",
[("visualize_input_1.json", "visualize_output_1.pdf", "visualize_base_output_1.pdf")],
)
def test_visualisiere_ergebnisse(fn_in, fn_out, fn_out_base, tmp_config: AppConfig):
with open(DIR_TESTDATA / fn_in, "r") as f:
input_data = json.load(f)
visualisiere_ergebnisse(config=tmp_config, **input_data)
output_file: Path = tmp_config.working_dir / tmp_config.directories.output / fn_out
def test_generate_pdf_main():
# Delete the old generated file if it exists
if os.path.isfile(output_file):
os.remove(output_file)
assert output_file.is_file()
assert (
compare_images(
str(output_file),
str(DIR_IMAGEDATA / fn_out_base),
0,
)
is None
)
# Execute the __main__ block of visualize.py by running it as a script
script_path = Path(__file__).parent.parent / "src" / "akkudoktoreos" / "utils" / "visualize.py"
subprocess.run(["python", str(script_path)], check=True)
# Check if the file exists
assert os.path.isfile(output_file)
# Compare the generated file with the reference file
comparison = compare_images(str(reference_file), str(output_file), tol=0)
# Assert that there are no differences
assert comparison is None, f"Images differ: {comparison}"

Binary file not shown.

BIN
tests/testdata/test_example_report.pdf vendored Normal file

Binary file not shown.