mirror of
				https://github.com/Akkudoktor-EOS/EOS.git
				synced 2025-10-31 14:56:21 +00:00 
			
		
		
		
	Lastprediction als Service verfügbar und ohne DB Abfrage.
y
This commit is contained in:
		| @@ -7,7 +7,8 @@ strafe=10 | ||||
| moegliche_ladestroeme_in_prozent = [0.0 ,6.0/16.0, 7.0/16.0, 8.0/16.0, 9.0/16.0, 10.0/16.0, 11.0/16.0, 12.0/16.0, 13.0/16.0, 14.0/16.0, 15.0/16.0, 1.0 ] | ||||
|  | ||||
|  | ||||
| db_config = { | ||||
| # Optional | ||||
| db_config = {  | ||||
|     'user': '', | ||||
|     'password': '', | ||||
|     'host': '192.168.1.135', | ||||
|   | ||||
							
								
								
									
										218
									
								
								flask_server.py
									
									
									
									
									
								
							
							
						
						
									
										218
									
								
								flask_server.py
									
									
									
									
									
								
							| @@ -33,31 +33,31 @@ opt_class = optimization_problem(prediction_hours=prediction_hours, strafe=10, o | ||||
|  | ||||
|  | ||||
|  | ||||
| @app.route('/last_correction', methods=['GET']) | ||||
| def flask_last_correction(): | ||||
|     if request.method == 'GET': | ||||
|         year_energy = float(request.args.get("year_energy")) | ||||
|         date_now,date = get_start_enddate(prediction_hours,startdate=datetime.now().date()) | ||||
|         ############### | ||||
|         # Load Forecast | ||||
|         ############### | ||||
|         lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy) | ||||
|         #leistung_haushalt = lf.get_daily_stats(date)[0,...]  # Datum anpassen | ||||
|         leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0] # Nur Erwartungswert!         | ||||
|          | ||||
|         gesamtlast = Gesamtlast(prediction_hours=prediction_hours)         | ||||
|         gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) | ||||
|  | ||||
| # @app.route('/last_correction', methods=['GET']) | ||||
| # def flask_last_correction(): | ||||
|     # if request.method == 'GET': | ||||
|         # year_energy = float(request.args.get("year_energy")) | ||||
|         # date_now,date = get_start_enddate(prediction_hours,startdate=datetime.now().date()) | ||||
|         # ############### | ||||
|         # # WP | ||||
|         # ############## | ||||
|         # leistung_wp = wp.simulate_24h(temperature_forecast) | ||||
|         # gesamtlast.hinzufuegen("Heatpump", leistung_wp) | ||||
|         # # Load Forecast | ||||
|         # ############### | ||||
|         # lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy) | ||||
|         # #leistung_haushalt = lf.get_daily_stats(date)[0,...]  # Datum anpassen | ||||
|         # leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0] # Nur Erwartungswert!         | ||||
|          | ||||
|         # gesamtlast = Gesamtlast(prediction_hours=prediction_hours)         | ||||
|         # gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) | ||||
|  | ||||
|         # # ############### | ||||
|         # # # WP | ||||
|         # # ############## | ||||
|         # # leistung_wp = wp.simulate_24h(temperature_forecast) | ||||
|         # # gesamtlast.hinzufuegen("Heatpump", leistung_wp) | ||||
|                  | ||||
|         last = gesamtlast.gesamtlast_berechnen() | ||||
|         print(last) | ||||
|         #print(specific_date_prices) | ||||
|         return jsonify(last.tolist()) | ||||
|         # last = gesamtlast.gesamtlast_berechnen() | ||||
|         # print(last) | ||||
|         # #print(specific_date_prices) | ||||
|         # return jsonify(last.tolist()) | ||||
|  | ||||
|  | ||||
| @app.route('/soc', methods=['GET']) | ||||
| @@ -106,66 +106,146 @@ def flask_strompreis(): | ||||
|         return jsonify(specific_date_prices.tolist()) | ||||
|  | ||||
|  | ||||
| @app.route('/gesamtlast', methods=['GET']) | ||||
|  | ||||
| # Die letzten X gemessenen Daten + gesamtlast Simple oder eine andere Schätung als Input | ||||
| # Daraus wird dann eine neuen Lastprognose erstellt welche korrigiert ist. | ||||
| # Input:  | ||||
| @app.route('/gesamtlast', methods=['POST']) | ||||
| def flask_gesamtlast(): | ||||
|     if request.method == 'GET': | ||||
|         year_energy = float(request.args.get("year_energy")) | ||||
|         prediction_hours = int(request.args.get("hours", 48))  # Default to 24 hours if not specified | ||||
|         date_now = datetime.now() | ||||
|         end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S') | ||||
|     # Daten aus dem JSON-Body abrufen | ||||
|     data = request.get_json() | ||||
|  | ||||
|         ############### | ||||
|         # Load Forecast | ||||
|         ############### | ||||
|         # Instantiate LastEstimator and get measured data | ||||
|         estimator = LastEstimator() | ||||
|         start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d')  # Example: last 60 days | ||||
|         end_date = date_now.strftime('%Y-%m-%d')  # Current date | ||||
|     # Extract year_energy and prediction_hours from the request JSON | ||||
|     year_energy = float(data.get("year_energy")) | ||||
|     prediction_hours = int(data.get("hours", 48))  # Default to 48 hours if not specified | ||||
|  | ||||
|         last_df = estimator.get_last(start_date, end_date) | ||||
|     # Measured data as JSON | ||||
|     measured_data_json = data.get("measured_data") | ||||
|  | ||||
|         selected_columns = last_df[['timestamp', 'Last']] | ||||
|         selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') | ||||
|         selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') | ||||
|         cleaned_data = selected_columns.dropna() | ||||
|     # Convert JSON data into a Pandas DataFrame | ||||
|     measured_data = pd.DataFrame(measured_data_json) | ||||
|     # Make sure the 'time' column is in datetime format | ||||
|     measured_data['time'] = pd.to_datetime(measured_data['time']) | ||||
|  | ||||
|         # Instantiate LoadForecast | ||||
|         lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy) | ||||
|     # Check if the datetime has timezone info, if not, assume it's local time | ||||
|     if measured_data['time'].dt.tz is None: | ||||
|         # Treat it as local time and localize it | ||||
|         measured_data['time'] = measured_data['time'].dt.tz_localize('Europe/Berlin') | ||||
|     else: | ||||
|         # Convert the time to local timezone (e.g., 'Europe/Berlin') | ||||
|         measured_data['time'] = measured_data['time'].dt.tz_convert('Europe/Berlin') | ||||
|  | ||||
|         # Generate forecast data | ||||
|         forecast_list = [] | ||||
|         for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): | ||||
|             date_str = single_date.strftime('%Y-%m-%d') | ||||
|             daily_forecast = lf.get_daily_stats(date_str) | ||||
|             mean_values = daily_forecast[0] | ||||
|             hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] | ||||
|             daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) | ||||
|             forecast_list.append(daily_forecast_df) | ||||
|     # Remove timezone info after conversion | ||||
|     measured_data['time'] = measured_data['time'].dt.tz_localize(None) | ||||
|      | ||||
|     # Instantiate LoadForecast and generate forecast data | ||||
|     lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy) | ||||
|  | ||||
|         forecast_df = pd.concat(forecast_list, ignore_index=True) | ||||
|     # Generate forecast data based on the measured data time range | ||||
|     forecast_list = [] | ||||
|     for single_date in pd.date_range(measured_data['time'].min().date(), measured_data['time'].max().date()): | ||||
|         date_str = single_date.strftime('%Y-%m-%d') | ||||
|         daily_forecast = lf.get_daily_stats(date_str) | ||||
|         mean_values = daily_forecast[0] | ||||
|         hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] | ||||
|         daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) | ||||
|         forecast_list.append(daily_forecast_df) | ||||
|  | ||||
|         # Create LoadPredictionAdjuster instance | ||||
|         adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf) | ||||
|         adjuster.calculate_weighted_mean() | ||||
|         adjuster.adjust_predictions() | ||||
|     # Concatenate all daily forecasts into a single DataFrame | ||||
|     predicted_data = pd.concat(forecast_list, ignore_index=True) | ||||
|     #print(predicted_data) | ||||
|     # Create LoadPredictionAdjuster instance | ||||
|     adjuster = LoadPredictionAdjuster(measured_data, predicted_data, lf) | ||||
|  | ||||
|         # Predict the next hours | ||||
|         future_predictions = adjuster.predict_next_hours(prediction_hours) | ||||
|     # Calculate weighted mean and adjust predictions | ||||
|     adjuster.calculate_weighted_mean() | ||||
|     adjuster.adjust_predictions() | ||||
|  | ||||
|         leistung_haushalt = future_predictions['Adjusted Pred'].values | ||||
|     # Predict the next x hours | ||||
|     future_predictions = adjuster.predict_next_hours(prediction_hours) | ||||
|  | ||||
|         gesamtlast = Gesamtlast(prediction_hours=prediction_hours)         | ||||
|         gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) | ||||
|     # Extract the household power predictions | ||||
|     leistung_haushalt = future_predictions['Adjusted Pred'].values | ||||
|  | ||||
|     # Instantiate Gesamtlast and add household power predictions | ||||
|     gesamtlast = Gesamtlast(prediction_hours=prediction_hours)         | ||||
|     gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) | ||||
|  | ||||
|     # ############### | ||||
|     # # WP (optional) | ||||
|     # ############### | ||||
|     # leistung_wp = wp.simulate_24h(temperature_forecast) | ||||
|     # gesamtlast.hinzufuegen("Heatpump", leistung_wp) | ||||
|      | ||||
|     # Calculate the total load | ||||
|     last = gesamtlast.gesamtlast_berechnen() | ||||
|  | ||||
|     # Return the calculated load as JSON | ||||
|     return jsonify(last.tolist()) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| # @app.route('/gesamtlast', methods=['GET']) | ||||
| # def flask_gesamtlast(): | ||||
|     # if request.method == 'GET': | ||||
|         # year_energy = float(request.args.get("year_energy")) | ||||
|         # prediction_hours = int(request.args.get("hours", 48))  # Default to 24 hours if not specified | ||||
|         # date_now = datetime.now() | ||||
|         # end_date = (date_now + timedelta(hours=prediction_hours)).strftime('%Y-%m-%d %H:%M:%S') | ||||
|  | ||||
|         # ############### | ||||
|         # # WP | ||||
|         # ############## | ||||
|         # leistung_wp = wp.simulate_24h(temperature_forecast) | ||||
|         # gesamtlast.hinzufuegen("Heatpump", leistung_wp) | ||||
|         # # Load Forecast | ||||
|         # ############### | ||||
|         # # Instantiate LastEstimator and get measured data | ||||
|         # estimator = LastEstimator() | ||||
|         # start_date = (date_now - timedelta(days=60)).strftime('%Y-%m-%d')  # Example: last 60 days | ||||
|         # end_date = date_now.strftime('%Y-%m-%d')  # Current date | ||||
|  | ||||
|         # last_df = estimator.get_last(start_date, end_date) | ||||
|  | ||||
|         # selected_columns = last_df[['timestamp', 'Last']] | ||||
|         # selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') | ||||
|         # selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') | ||||
|         # cleaned_data = selected_columns.dropna() | ||||
|  | ||||
|         # # Instantiate LoadForecast | ||||
|         # lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy) | ||||
|  | ||||
|         # # Generate forecast data | ||||
|         # forecast_list = [] | ||||
|         # for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): | ||||
|             # date_str = single_date.strftime('%Y-%m-%d') | ||||
|             # daily_forecast = lf.get_daily_stats(date_str) | ||||
|             # mean_values = daily_forecast[0] | ||||
|             # hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] | ||||
|             # daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) | ||||
|             # forecast_list.append(daily_forecast_df) | ||||
|  | ||||
|         # forecast_df = pd.concat(forecast_list, ignore_index=True) | ||||
|  | ||||
|         # # Create LoadPredictionAdjuster instance | ||||
|         # adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf) | ||||
|         # adjuster.calculate_weighted_mean() | ||||
|         # adjuster.adjust_predictions() | ||||
|  | ||||
|         # # Predict the next hours | ||||
|         # future_predictions = adjuster.predict_next_hours(prediction_hours) | ||||
|  | ||||
|         # leistung_haushalt = future_predictions['Adjusted Pred'].values | ||||
|  | ||||
|         # gesamtlast = Gesamtlast(prediction_hours=prediction_hours)         | ||||
|         # gesamtlast.hinzufuegen("Haushalt", leistung_haushalt) | ||||
|  | ||||
|         # # ############### | ||||
|         # # # WP | ||||
|         # # ############## | ||||
|         # # leistung_wp = wp.simulate_24h(temperature_forecast) | ||||
|         # # gesamtlast.hinzufuegen("Heatpump", leistung_wp) | ||||
|                  | ||||
|         last = gesamtlast.gesamtlast_berechnen() | ||||
|         print(last) | ||||
|         return jsonify(last.tolist()) | ||||
|         # last = gesamtlast.gesamtlast_berechnen() | ||||
|         # print(last) | ||||
|         # return jsonify(last.tolist()) | ||||
|  | ||||
|               | ||||
| @app.route('/gesamtlast_simple', methods=['GET']) | ||||
|   | ||||
| @@ -44,11 +44,31 @@ class LoadPredictionAdjuster: | ||||
|  | ||||
|  | ||||
|     def _merge_data(self): | ||||
|         # Konvertiere die Zeitspalte in beiden Datenrahmen zu datetime | ||||
|         self.predicted_data['time'] = pd.to_datetime(self.predicted_data['time']) | ||||
|         self.measured_data['time'] = pd.to_datetime(self.measured_data['time']) | ||||
|  | ||||
|         # Stelle sicher, dass beide Zeitspalten dieselbe Zeitzone haben | ||||
|         # Measured Data: Setze die Zeitzone auf UTC, falls es tz-naiv ist | ||||
|         if self.measured_data['time'].dt.tz is None: | ||||
|                 self.measured_data['time'] = self.measured_data['time'].dt.tz_localize('UTC') | ||||
|  | ||||
|         # Predicted Data: Setze ebenfalls UTC und konvertiere anschließend in die lokale Zeitzone | ||||
|         self.predicted_data['time'] = self.predicted_data['time'].dt.tz_localize('UTC').dt.tz_convert('Europe/Berlin') | ||||
|         self.measured_data['time'] = self.measured_data['time'].dt.tz_convert('Europe/Berlin') | ||||
|  | ||||
|         # Optional: Entferne die Zeitzoneninformation, wenn du nur lokal arbeiten möchtest | ||||
|         self.predicted_data['time'] = self.predicted_data['time'].dt.tz_localize(None) | ||||
|         self.measured_data['time'] = self.measured_data['time'].dt.tz_localize(None) | ||||
|  | ||||
|         # Jetzt kannst du den Merge durchführen | ||||
|         merged_data = pd.merge(self.measured_data, self.predicted_data, on='time', how='inner') | ||||
|         print(merged_data) | ||||
|         merged_data['Hour'] = merged_data['time'].dt.hour | ||||
|         merged_data['DayOfWeek'] = merged_data['time'].dt.dayofweek | ||||
|         return merged_data | ||||
|  | ||||
|  | ||||
|     def calculate_weighted_mean(self, train_period_weeks=9, test_period_weeks=1): | ||||
|         self.merged_data = self._remove_outliers(self.merged_data) | ||||
|         train_end_date = self.merged_data['time'].max() - pd.Timedelta(weeks=test_period_weeks) | ||||
| @@ -124,112 +144,65 @@ class LoadPredictionAdjuster: | ||||
|  | ||||
|  | ||||
|  | ||||
| class LastEstimator: | ||||
|     def __init__(self): | ||||
|         self.conn_params = db_config | ||||
|         self.conn = mariadb.connect(**self.conn_params) | ||||
|  | ||||
|     def fetch_data(self, start_date, end_date): | ||||
|         queries = { | ||||
|             "Stromzaehler": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Stromzaehler FROM sensor_stromzaehler WHERE topic = 'stromzaehler leistung' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC", | ||||
|             "PV": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS PV FROM data WHERE topic = 'solarallpower' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC", | ||||
|             "Batterie_Strom_PIP": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Batterie_Strom_PIP FROM pip WHERE topic = 'battery_current' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC", | ||||
|             "Batterie_Volt_PIP": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Batterie_Volt_PIP FROM pip WHERE topic = 'battery_voltage' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC", | ||||
|             "Stromzaehler_Raus": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Stromzaehler_Raus FROM sensor_stromzaehler WHERE topic = 'stromzaehler leistung raus' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC", | ||||
|             "Wallbox": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Wallbox_Leistung FROM wallbox WHERE topic = 'power_total' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC", | ||||
|  | ||||
|         } | ||||
|  | ||||
|  | ||||
|         dataframes = {} | ||||
|         for key, query in queries.items(): | ||||
|             dataframes[key] = pd.read_sql(query, self.conn) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
| # if __name__ == '__main__': | ||||
|  | ||||
|  | ||||
|         # estimator = LastEstimator() | ||||
|         # start_date = "2024-06-01" | ||||
|         # end_date = "2024-08-01" | ||||
|         # last_df = estimator.get_last(start_date, end_date) | ||||
|  | ||||
|         # selected_columns = last_df[['timestamp', 'Last']] | ||||
|         # selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') | ||||
|         # selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') | ||||
|  | ||||
|         # # Drop rows with NaN values | ||||
|         # cleaned_data = selected_columns.dropna() | ||||
|  | ||||
|         # print(cleaned_data) | ||||
|         # # Create an instance of LoadForecast | ||||
|          | ||||
|         return dataframes | ||||
|         # lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000) | ||||
|  | ||||
|     def calculate_last(self, dataframes): | ||||
|         # Batterie_Leistung = Batterie_Strom_PIP * Batterie_Volt_PIP | ||||
|         dataframes["Batterie_Leistung"] = dataframes["Batterie_Strom_PIP"].merge(dataframes["Batterie_Volt_PIP"], on="timestamp", how="outer") | ||||
|         dataframes["Batterie_Leistung"]["Batterie_Leistung"] = dataframes["Batterie_Leistung"]["Batterie_Strom_PIP"] * dataframes["Batterie_Leistung"]["Batterie_Volt_PIP"] | ||||
|         # # Initialize an empty DataFrame to hold the forecast data | ||||
|         # forecast_list = [] | ||||
|  | ||||
|         # Stromzaehler_Saldo = Stromzaehler - Stromzaehler_Raus | ||||
|         dataframes["Stromzaehler_Saldo"] = dataframes["Stromzaehler"].merge(dataframes["Stromzaehler_Raus"], on="timestamp", how="outer") | ||||
|         dataframes["Stromzaehler_Saldo"]["Stromzaehler_Saldo"] = dataframes["Stromzaehler_Saldo"]["Stromzaehler"] - dataframes["Stromzaehler_Saldo"]["Stromzaehler_Raus"] | ||||
|         # # Loop through each day in the date range | ||||
|         # for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): | ||||
|                 # date_str = single_date.strftime('%Y-%m-%d') | ||||
|                 # daily_forecast = lf.get_daily_stats(date_str) | ||||
|                 # mean_values = daily_forecast[0]  # Extract the mean values | ||||
|                 # hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] | ||||
|                 # daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) | ||||
|                 # forecast_list.append(daily_forecast_df) | ||||
|  | ||||
|         # Stromzaehler_Saldo - Batterie_Leistung | ||||
|         dataframes["Netzleistung"] = dataframes["Stromzaehler_Saldo"].merge(dataframes["Batterie_Leistung"], on="timestamp", how="outer") | ||||
|         dataframes["Netzleistung"]["Netzleistung"] = dataframes["Netzleistung"]["Stromzaehler_Saldo"] - dataframes["Netzleistung"]["Batterie_Leistung"] | ||||
|         # # Concatenate all daily forecasts into a single DataFrame | ||||
|         # forecast_df = pd.concat(forecast_list, ignore_index=True) | ||||
|  | ||||
|         # Füge die Wallbox-Leistung hinzu | ||||
|         dataframes["Netzleistung"] = dataframes["Netzleistung"].merge(dataframes["Wallbox"], on="timestamp", how="left") | ||||
|         dataframes["Netzleistung"]["Wallbox_Leistung"] = dataframes["Netzleistung"]["Wallbox_Leistung"].fillna(0)  # Fülle fehlende Werte mit 0 | ||||
|         # # Create an instance of the LoadPredictionAdjuster class | ||||
|         # adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf) | ||||
|  | ||||
|         # Last = Netzleistung + PV | ||||
|         # Berechne die endgültige Last | ||||
|         dataframes["Last"] = dataframes["Netzleistung"].merge(dataframes["PV"], on="timestamp", how="outer") | ||||
|         dataframes["Last"]["Last_ohneWallbox"] = dataframes["Last"]["Netzleistung"] + dataframes["Last"]["PV"] | ||||
|         dataframes["Last"]["Last"] = dataframes["Last"]["Netzleistung"] + dataframes["Last"]["PV"] - dataframes["Last"]["Wallbox_Leistung"] | ||||
|         return dataframes["Last"].dropna() | ||||
|         # # Calculate the weighted mean differences | ||||
|         # adjuster.calculate_weighted_mean() | ||||
|  | ||||
|     def get_last(self, start_date, end_date): | ||||
|         dataframes = self.fetch_data(start_date, end_date) | ||||
|         last_df = self.calculate_last(dataframes) | ||||
|         return last_df | ||||
|         # # Adjust the predictions | ||||
|         # adjuster.adjust_predictions() | ||||
|  | ||||
|         # # Plot the results | ||||
|         # adjuster.plot_results() | ||||
|  | ||||
|         # # Evaluate the model | ||||
|         # adjuster.evaluate_model() | ||||
|  | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|  | ||||
|  | ||||
|         estimator = LastEstimator() | ||||
|         start_date = "2024-06-01" | ||||
|         end_date = "2024-08-01" | ||||
|         last_df = estimator.get_last(start_date, end_date) | ||||
|  | ||||
|         selected_columns = last_df[['timestamp', 'Last']] | ||||
|         selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H') | ||||
|         selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce') | ||||
|  | ||||
|         # Drop rows with NaN values | ||||
|         cleaned_data = selected_columns.dropna() | ||||
|  | ||||
|         print(cleaned_data) | ||||
|         # Create an instance of LoadForecast | ||||
|          | ||||
|         lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000) | ||||
|  | ||||
|         # Initialize an empty DataFrame to hold the forecast data | ||||
|         forecast_list = [] | ||||
|  | ||||
|         # Loop through each day in the date range | ||||
|         for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()): | ||||
|                 date_str = single_date.strftime('%Y-%m-%d') | ||||
|                 daily_forecast = lf.get_daily_stats(date_str) | ||||
|                 mean_values = daily_forecast[0]  # Extract the mean values | ||||
|                 hours = [single_date + pd.Timedelta(hours=i) for i in range(24)] | ||||
|                 daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values}) | ||||
|                 forecast_list.append(daily_forecast_df) | ||||
|  | ||||
|         # Concatenate all daily forecasts into a single DataFrame | ||||
|         forecast_df = pd.concat(forecast_list, ignore_index=True) | ||||
|  | ||||
|         # Create an instance of the LoadPredictionAdjuster class | ||||
|         adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf) | ||||
|  | ||||
|         # Calculate the weighted mean differences | ||||
|         adjuster.calculate_weighted_mean() | ||||
|  | ||||
|         # Adjust the predictions | ||||
|         adjuster.adjust_predictions() | ||||
|  | ||||
|         # Plot the results | ||||
|         adjuster.plot_results() | ||||
|  | ||||
|         # Evaluate the model | ||||
|         adjuster.evaluate_model() | ||||
|  | ||||
|         # Predict the next x hours | ||||
|         future_predictions = adjuster.predict_next_hours(48) | ||||
|         print(future_predictions) | ||||
|         # # Predict the next x hours | ||||
|         # future_predictions = adjuster.predict_next_hours(48) | ||||
|         # print(future_predictions) | ||||
| @@ -8,6 +8,5 @@ deap | ||||
| scipy  | ||||
| scikit-learn | ||||
| pandas | ||||
| tensorflow | ||||
| joblib1.4.0 | ||||
| mariadb | ||||
		Reference in New Issue
	
	Block a user