Self consumption predictor

* Inverter: Self consumption interpolator for better discharge_hour results
 * Small penalty when EV 100% and charge >0
 * Price Forceast (use mean of last 7 days instead of repeat)
 * Price Prediction as JSON simulation output, config fixed electricty fees configurable + MyPy & Ruff
This commit is contained in:
Andreas
2024-12-19 14:45:20 +01:00
committed by Dominique Lasserre
parent 1c75060d8a
commit 410a23e375
15 changed files with 1243 additions and 820 deletions

View File

@@ -1,6 +1,7 @@
from typing import Optional, Tuple
from typing import Optional
from pydantic import BaseModel, Field
from scipy.interpolate import RegularGridInterpolator
from akkudoktoreos.devices.battery import Battery
from akkudoktoreos.devices.devicesabc import DeviceBase
@@ -16,6 +17,7 @@ class InverterParameters(BaseModel):
class Inverter(DeviceBase):
def __init__(
self,
self_consumption_predictor: RegularGridInterpolator,
parameters: Optional[InverterParameters] = None,
akku: Optional[Battery] = None,
provider_id: Optional[str] = None,
@@ -34,6 +36,7 @@ class Inverter(DeviceBase):
logger.error(error_msg)
raise NotImplementedError(error_msg)
self.akku = akku # Connection to a battery object
self.self_consumption_predictor = self_consumption_predictor
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
@@ -58,28 +61,60 @@ class Inverter(DeviceBase):
def process_energy(
self, generation: float, consumption: float, hour: int
) -> Tuple[float, float, float, float]:
) -> tuple[float, float, float, float]:
losses = 0.0
grid_export = 0.0
grid_import = 0.0
self_consumption = 0.0
if generation >= consumption:
# Case 1: Sufficient or excess generation
actual_consumption = min(consumption, self.max_power_wh)
remaining_energy = generation - actual_consumption
if consumption > self.max_power_wh:
# If consumption exceeds maximum inverter power
losses += generation - self.max_power_wh
remaining_power = self.max_power_wh - consumption
grid_import = -remaining_power # Negative indicates feeding into the grid
self_consumption = self.max_power_wh
else:
scr = self.self_consumption_predictor.calculate_self_consumption(
consumption, generation
)
# Charge battery with excess energy
charged_energy, charging_losses = self.akku.charge_energy(remaining_energy, hour)
losses += charging_losses
# Remaining power after consumption
remaining_power = (generation - consumption) * scr # EVQ
# Remaining load Self Consumption not perfect
remaining_load_evq = (generation - consumption) * (1.0 - scr)
# Calculate remaining surplus after battery charge
remaining_surplus = remaining_energy - (charged_energy + charging_losses)
grid_export = min(remaining_surplus, self.max_power_wh - actual_consumption)
if remaining_load_evq > 0:
# Akku muss den Restverbrauch decken
from_battery, discharge_losses = self.akku.discharge_energy(
remaining_load_evq, hour
)
remaining_load_evq -= from_battery # Restverbrauch nach Akkuentladung
losses += discharge_losses
# If any remaining surplus can't be fed to the grid, count as losses
losses += max(remaining_surplus - grid_export, 0)
self_consumption = actual_consumption
# Wenn der Akku den Restverbrauch nicht vollständig decken kann, wird der Rest ins Netz gezogen
if remaining_load_evq > 0:
grid_import += remaining_load_evq
remaining_load_evq = 0
else:
from_battery = 0.0
if remaining_power > 0:
# Load battery with excess energy
charged_energie, charge_losses = self.akku.charge_energy(remaining_power, hour)
remaining_surplus = remaining_power - (charged_energie + charge_losses)
# Feed-in to the grid based on remaining capacity
if remaining_surplus > self.max_power_wh - consumption:
grid_export = self.max_power_wh - consumption
losses += remaining_surplus - grid_export
else:
grid_export = remaining_surplus
losses += charge_losses
self_consumption = (
consumption + from_battery
) # Self-consumption is equal to the load
else:
# Case 2: Insufficient generation, cover shortfall