mirror of
				https://github.com/Akkudoktor-EOS/EOS.git
				synced 2025-11-04 08:46:20 +00:00 
			
		
		
		
	Self consumption predictor
* Inverter: Self consumption interpolator for better discharge_hour results * Small penalty when EV 100% and charge >0 * Price Forceast (use mean of last 7 days instead of repeat) * Price Prediction as JSON simulation output, config fixed electricty fees configurable + MyPy & Ruff
This commit is contained in:
		
				
					committed by
					
						
						Dominique Lasserre
					
				
			
			
				
	
			
			
			
						parent
						
							1c75060d8a
						
					
				
				
					commit
					410a23e375
				
			
							
								
								
									
										72
									
								
								src/akkudoktoreos/prediction/self_consumption_probability.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								src/akkudoktoreos/prediction/self_consumption_probability.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,72 @@
 | 
			
		||||
#!/usr/bin/env python
 | 
			
		||||
import pickle
 | 
			
		||||
from functools import lru_cache
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
from scipy.interpolate import RegularGridInterpolator
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class self_consumption_probability_interpolator:
 | 
			
		||||
    def __init__(self, filepath: str | Path):
 | 
			
		||||
        self.filepath = filepath
 | 
			
		||||
        # self.interpolator = None
 | 
			
		||||
        # Load the RegularGridInterpolator
 | 
			
		||||
        with open(self.filepath, "rb") as file:
 | 
			
		||||
            self.interpolator: RegularGridInterpolator = pickle.load(file)
 | 
			
		||||
 | 
			
		||||
    @lru_cache(maxsize=128)
 | 
			
		||||
    def generate_points(
 | 
			
		||||
        self, load_1h_power: float, pv_power: float
 | 
			
		||||
    ) -> tuple[np.ndarray, np.ndarray]:
 | 
			
		||||
        """Generate the grid points for interpolation."""
 | 
			
		||||
        partial_loads = np.arange(0, pv_power + 50, 50)
 | 
			
		||||
        points = np.array([np.full_like(partial_loads, load_1h_power), partial_loads]).T
 | 
			
		||||
        return points, partial_loads
 | 
			
		||||
 | 
			
		||||
    def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
 | 
			
		||||
        points, partial_loads = self.generate_points(load_1h_power, pv_power)
 | 
			
		||||
        probabilities = self.interpolator(points)
 | 
			
		||||
        return probabilities.sum()
 | 
			
		||||
 | 
			
		||||
    # def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
 | 
			
		||||
    #     """Calculate the PV self-consumption rate using RegularGridInterpolator.
 | 
			
		||||
 | 
			
		||||
    #     Args:
 | 
			
		||||
    #     - last_1h_power: 1h power levels (W).
 | 
			
		||||
    #     - pv_power: Current PV power output (W).
 | 
			
		||||
 | 
			
		||||
    #     Returns:
 | 
			
		||||
    #     - Self-consumption rate as a float.
 | 
			
		||||
    #     """
 | 
			
		||||
    #     # Generate the range of partial loads (0 to last_1h_power)
 | 
			
		||||
    #     partial_loads = np.arange(0, pv_power + 50, 50)
 | 
			
		||||
 | 
			
		||||
    #     # Get probabilities for all partial loads
 | 
			
		||||
    #     points = np.array([np.full_like(partial_loads, load_1h_power), partial_loads]).T
 | 
			
		||||
    #     if self.interpolator == None:
 | 
			
		||||
    #         return -1.0
 | 
			
		||||
    #     probabilities = self.interpolator(points)
 | 
			
		||||
    #     self_consumption_rate = probabilities.sum()
 | 
			
		||||
 | 
			
		||||
    #     # probabilities = probabilities / (np.sum(probabilities))  # / (pv_power / 3450))
 | 
			
		||||
    #     # # for i, w in enumerate(partial_loads):
 | 
			
		||||
    #     # #    print(w, ": ", probabilities[i])
 | 
			
		||||
    #     # print(probabilities.sum())
 | 
			
		||||
 | 
			
		||||
    #     # # Ensure probabilities are within [0, 1]
 | 
			
		||||
    #     # probabilities = np.clip(probabilities, 0, 1)
 | 
			
		||||
 | 
			
		||||
    #     # # Mask: Only include probabilities where the load is <= PV power
 | 
			
		||||
    #     # mask = partial_loads <= pv_power
 | 
			
		||||
 | 
			
		||||
    #     # # Calculate the cumulative probability for covered loads
 | 
			
		||||
    #     # self_consumption_rate = np.sum(probabilities[mask]) / np.sum(probabilities)
 | 
			
		||||
    #     # print(self_consumption_rate)
 | 
			
		||||
    #     # sys.exit()
 | 
			
		||||
 | 
			
		||||
    #     return self_consumption_rate
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Test the function
 | 
			
		||||
# print(calculate_self_consumption(1000, 1200))
 | 
			
		||||
		Reference in New Issue
	
	Block a user