mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-09-20 02:31:14 +00:00
Self consumption predictor
* Inverter: Self consumption interpolator for better discharge_hour results * Small penalty when EV 100% and charge >0 * Price Forceast (use mean of last 7 days instead of repeat) * Price Prediction as JSON simulation output, config fixed electricty fees configurable + MyPy & Ruff
This commit is contained in:
committed by
Dominique Lasserre
parent
1c75060d8a
commit
410a23e375
72
src/akkudoktoreos/prediction/self_consumption_probability.py
Normal file
72
src/akkudoktoreos/prediction/self_consumption_probability.py
Normal file
@@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python
|
||||
import pickle
|
||||
from functools import lru_cache
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
from scipy.interpolate import RegularGridInterpolator
|
||||
|
||||
|
||||
class self_consumption_probability_interpolator:
|
||||
def __init__(self, filepath: str | Path):
|
||||
self.filepath = filepath
|
||||
# self.interpolator = None
|
||||
# Load the RegularGridInterpolator
|
||||
with open(self.filepath, "rb") as file:
|
||||
self.interpolator: RegularGridInterpolator = pickle.load(file)
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def generate_points(
|
||||
self, load_1h_power: float, pv_power: float
|
||||
) -> tuple[np.ndarray, np.ndarray]:
|
||||
"""Generate the grid points for interpolation."""
|
||||
partial_loads = np.arange(0, pv_power + 50, 50)
|
||||
points = np.array([np.full_like(partial_loads, load_1h_power), partial_loads]).T
|
||||
return points, partial_loads
|
||||
|
||||
def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
|
||||
points, partial_loads = self.generate_points(load_1h_power, pv_power)
|
||||
probabilities = self.interpolator(points)
|
||||
return probabilities.sum()
|
||||
|
||||
# def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
|
||||
# """Calculate the PV self-consumption rate using RegularGridInterpolator.
|
||||
|
||||
# Args:
|
||||
# - last_1h_power: 1h power levels (W).
|
||||
# - pv_power: Current PV power output (W).
|
||||
|
||||
# Returns:
|
||||
# - Self-consumption rate as a float.
|
||||
# """
|
||||
# # Generate the range of partial loads (0 to last_1h_power)
|
||||
# partial_loads = np.arange(0, pv_power + 50, 50)
|
||||
|
||||
# # Get probabilities for all partial loads
|
||||
# points = np.array([np.full_like(partial_loads, load_1h_power), partial_loads]).T
|
||||
# if self.interpolator == None:
|
||||
# return -1.0
|
||||
# probabilities = self.interpolator(points)
|
||||
# self_consumption_rate = probabilities.sum()
|
||||
|
||||
# # probabilities = probabilities / (np.sum(probabilities)) # / (pv_power / 3450))
|
||||
# # # for i, w in enumerate(partial_loads):
|
||||
# # # print(w, ": ", probabilities[i])
|
||||
# # print(probabilities.sum())
|
||||
|
||||
# # # Ensure probabilities are within [0, 1]
|
||||
# # probabilities = np.clip(probabilities, 0, 1)
|
||||
|
||||
# # # Mask: Only include probabilities where the load is <= PV power
|
||||
# # mask = partial_loads <= pv_power
|
||||
|
||||
# # # Calculate the cumulative probability for covered loads
|
||||
# # self_consumption_rate = np.sum(probabilities[mask]) / np.sum(probabilities)
|
||||
# # print(self_consumption_rate)
|
||||
# # sys.exit()
|
||||
|
||||
# return self_consumption_rate
|
||||
|
||||
|
||||
# Test the function
|
||||
# print(calculate_self_consumption(1000, 1200))
|
Reference in New Issue
Block a user