mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-08-25 06:52:23 +00:00
Soc 1 hour shift fixed + some german -> english translations in ems
This commit is contained in:
committed by
Dominique Lasserre
parent
053e60aca4
commit
54eae5a871
@@ -135,19 +135,19 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
# TODO: Take from prediction
|
||||
# -------------------------
|
||||
|
||||
gesamtlast: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
load_energy_array: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals.",
|
||||
)
|
||||
pv_prognose_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
pv_prediction_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals.",
|
||||
)
|
||||
strompreis_euro_pro_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
elect_price_hourly: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals.",
|
||||
)
|
||||
einspeiseverguetung_euro_pro_wh_arr: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
elect_revenue_per_hour_arr: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the feed-in compensation in euros per watt-hour.",
|
||||
)
|
||||
@@ -156,8 +156,8 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
# TODO: Move to devices
|
||||
# -------------------------
|
||||
|
||||
akku: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
eauto: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
battery: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
ev: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
home_appliance: Optional[HomeAppliance] = Field(default=None, description="TBD.")
|
||||
inverter: Optional[Inverter] = Field(default=None, description="TBD.")
|
||||
|
||||
@@ -172,23 +172,25 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
def set_parameters(
|
||||
self,
|
||||
parameters: EnergieManagementSystemParameters,
|
||||
eauto: Optional[Battery] = None,
|
||||
ev: Optional[Battery] = None,
|
||||
home_appliance: Optional[HomeAppliance] = None,
|
||||
inverter: Optional[Inverter] = None,
|
||||
) -> None:
|
||||
self.gesamtlast = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prognose_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.strompreis_euro_pro_wh = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.einspeiseverguetung_euro_pro_wh_arr = (
|
||||
self.load_energy_array = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prediction_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.elect_price_hourly = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.elect_revenue_per_hour_arr = (
|
||||
parameters.einspeiseverguetung_euro_pro_wh
|
||||
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
||||
else np.full(len(self.gesamtlast), parameters.einspeiseverguetung_euro_pro_wh, float)
|
||||
else np.full(
|
||||
len(self.load_energy_array), parameters.einspeiseverguetung_euro_pro_wh, float
|
||||
)
|
||||
)
|
||||
if inverter is not None:
|
||||
self.akku = inverter.akku
|
||||
self.battery = inverter.battery
|
||||
else:
|
||||
self.akku = None
|
||||
self.eauto = eauto
|
||||
self.battery = None
|
||||
self.ev = ev
|
||||
self.home_appliance = home_appliance
|
||||
self.inverter = inverter
|
||||
self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
@@ -196,8 +198,8 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.akku is not None:
|
||||
self.akku.set_discharge_per_hour(ds)
|
||||
if self.battery is not None:
|
||||
self.battery.set_discharge_per_hour(ds)
|
||||
|
||||
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ac_charge_hours = ds
|
||||
@@ -213,10 +215,10 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
self.home_appliance.set_starting_time(ds, global_start_hour=global_start_hour)
|
||||
|
||||
def reset(self) -> None:
|
||||
if self.eauto:
|
||||
self.eauto.reset()
|
||||
if self.akku:
|
||||
self.akku.reset()
|
||||
if self.ev:
|
||||
self.ev.reset()
|
||||
if self.battery:
|
||||
self.battery.reset()
|
||||
|
||||
def run(
|
||||
self,
|
||||
@@ -269,12 +271,11 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
start_datetime = to_datetime().set(hour=start_hour, minute=0, second=0, microsecond=0)
|
||||
self.set_start_datetime(start_datetime)
|
||||
|
||||
def simuliere_ab_jetzt(self) -> dict[str, Any]:
|
||||
jetzt = to_datetime().now()
|
||||
start_stunde = jetzt.hour
|
||||
return self.simuliere(start_stunde)
|
||||
def simulate_start_now(self) -> dict[str, Any]:
|
||||
start_hour = to_datetime().now().hour
|
||||
return self.simulate(start_hour)
|
||||
|
||||
def simuliere(self, start_stunde: int) -> dict[str, Any]:
|
||||
def simulate(self, start_hour: int) -> dict[str, Any]:
|
||||
"""hour.
|
||||
|
||||
akku_soc_pro_stunde begin of the hour, initial hour state!
|
||||
@@ -282,139 +283,150 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
"""
|
||||
# Check for simulation integrity
|
||||
if (
|
||||
self.gesamtlast is None
|
||||
or self.pv_prognose_wh is None
|
||||
or self.strompreis_euro_pro_wh is None
|
||||
self.load_energy_array is None
|
||||
or self.pv_prediction_wh is None
|
||||
or self.elect_price_hourly is None
|
||||
or self.ev_charge_hours is None
|
||||
or self.ac_charge_hours is None
|
||||
or self.dc_charge_hours is None
|
||||
or self.einspeiseverguetung_euro_pro_wh_arr is None
|
||||
or self.elect_revenue_per_hour_arr is None
|
||||
):
|
||||
error_msg = (
|
||||
f"Mandatory data missing - "
|
||||
f"Load Curve: {self.gesamtlast}, "
|
||||
f"PV Forecast: {self.pv_prognose_wh}, "
|
||||
f"Electricity Price: {self.strompreis_euro_pro_wh}, "
|
||||
f"Load Curve: {self.load_energy_array}, "
|
||||
f"PV Forecast: {self.pv_prediction_wh}, "
|
||||
f"Electricity Price: {self.elect_price_hourly}, "
|
||||
f"EV Charge Hours: {self.ev_charge_hours}, "
|
||||
f"AC Charge Hours: {self.ac_charge_hours}, "
|
||||
f"DC Charge Hours: {self.dc_charge_hours}, "
|
||||
f"Feed-in tariff: {self.einspeiseverguetung_euro_pro_wh_arr}"
|
||||
f"Feed-in tariff: {self.elect_revenue_per_hour_arr}"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
lastkurve_wh = self.gesamtlast
|
||||
load_energy_array = self.load_energy_array
|
||||
|
||||
if not (len(lastkurve_wh) == len(self.pv_prognose_wh) == len(self.strompreis_euro_pro_wh)):
|
||||
error_msg = f"Array sizes do not match: Load Curve = {len(lastkurve_wh)}, PV Forecast = {len(self.pv_prognose_wh)}, Electricity Price = {len(self.strompreis_euro_pro_wh)}"
|
||||
if not (
|
||||
len(load_energy_array) == len(self.pv_prediction_wh) == len(self.elect_price_hourly)
|
||||
):
|
||||
error_msg = f"Array sizes do not match: Load Curve = {len(load_energy_array)}, PV Forecast = {len(self.pv_prediction_wh)}, Electricity Price = {len(self.elect_price_hourly)}"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Optimized total hours calculation
|
||||
ende = len(lastkurve_wh)
|
||||
total_hours = ende - start_stunde
|
||||
end_hour = len(load_energy_array)
|
||||
total_hours = end_hour - start_hour
|
||||
|
||||
# Pre-allocate arrays for the results, optimized for speed
|
||||
last_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
netzeinspeisung_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
netzbezug_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
kosten_euro_pro_stunde = np.full((total_hours), np.nan)
|
||||
einnahmen_euro_pro_stunde = np.full((total_hours), np.nan)
|
||||
akku_soc_pro_stunde = np.full((total_hours), np.nan)
|
||||
eauto_soc_pro_stunde = np.full((total_hours), np.nan)
|
||||
verluste_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
loads_energy_per_hour = np.full((total_hours), np.nan)
|
||||
feedin_energy_per_hour = np.full((total_hours), np.nan)
|
||||
consumption_energy_per_hour = np.full((total_hours), np.nan)
|
||||
costs_per_hour = np.full((total_hours), np.nan)
|
||||
revenue_per_hour = np.full((total_hours), np.nan)
|
||||
soc_per_hour = np.full((total_hours), np.nan) # Hour End State
|
||||
soc_ev_per_hour = np.full((total_hours), np.nan)
|
||||
losses_wh_per_hour = np.full((total_hours), np.nan)
|
||||
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
|
||||
electricity_price_per_hour = np.full((total_hours), np.nan)
|
||||
|
||||
# Set initial state
|
||||
if self.akku:
|
||||
akku_soc_pro_stunde[0] = self.akku.current_soc_percentage()
|
||||
if self.eauto:
|
||||
eauto_soc_pro_stunde[0] = self.eauto.current_soc_percentage()
|
||||
if self.battery:
|
||||
soc_per_hour[0] = self.battery.current_soc_percentage()
|
||||
if self.ev:
|
||||
soc_ev_per_hour[0] = self.ev.current_soc_percentage()
|
||||
|
||||
for stunde in range(start_stunde, ende):
|
||||
stunde_since_now = stunde - start_stunde
|
||||
for hour in range(start_hour, end_hour):
|
||||
hour_since_now = hour - start_hour
|
||||
|
||||
# save begin states
|
||||
if self.battery:
|
||||
soc_per_hour[hour_since_now] = self.battery.current_soc_percentage()
|
||||
else:
|
||||
soc_per_hour[hour_since_now] = 0.0
|
||||
if self.ev:
|
||||
soc_ev_per_hour[hour_since_now] = self.ev.current_soc_percentage()
|
||||
|
||||
# Accumulate loads and PV generation
|
||||
verbrauch = self.gesamtlast[stunde]
|
||||
verluste_wh_pro_stunde[stunde_since_now] = 0.0
|
||||
consumption = self.load_energy_array[hour]
|
||||
losses_wh_per_hour[hour_since_now] = 0.0
|
||||
|
||||
# Home appliances
|
||||
if self.home_appliance:
|
||||
ha_load = self.home_appliance.get_load_for_hour(stunde)
|
||||
verbrauch += ha_load
|
||||
home_appliance_wh_per_hour[stunde_since_now] = ha_load
|
||||
ha_load = self.home_appliance.get_load_for_hour(hour)
|
||||
consumption += ha_load
|
||||
home_appliance_wh_per_hour[hour_since_now] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if self.eauto:
|
||||
if self.ev_charge_hours[stunde] > 0:
|
||||
geladene_menge_eauto, verluste_eauto = self.eauto.charge_energy(
|
||||
None, stunde, relative_power=self.ev_charge_hours[stunde]
|
||||
if self.ev:
|
||||
if self.ev_charge_hours[hour] > 0:
|
||||
loaded_energy_ev, verluste_eauto = self.ev.charge_energy(
|
||||
None, hour, relative_power=self.ev_charge_hours[hour]
|
||||
)
|
||||
verbrauch += geladene_menge_eauto
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
|
||||
eauto_soc_pro_stunde[stunde_since_now] = self.eauto.current_soc_percentage()
|
||||
consumption += loaded_energy_ev
|
||||
losses_wh_per_hour[hour_since_now] += verluste_eauto
|
||||
|
||||
# Process inverter logic
|
||||
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (0.0, 0.0, 0.0, 0.0)
|
||||
if self.akku:
|
||||
self.akku.set_charge_allowed_for_hour(self.dc_charge_hours[stunde], stunde)
|
||||
energy_feedin_grid_actual, energy_consumption_grid_actual, losses, eigenverbrauch = (
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
)
|
||||
if self.battery:
|
||||
self.battery.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
|
||||
if self.inverter:
|
||||
erzeugung = self.pv_prognose_wh[stunde]
|
||||
netzeinspeisung, netzbezug, verluste, eigenverbrauch = self.inverter.process_energy(
|
||||
erzeugung, verbrauch, stunde
|
||||
)
|
||||
energy_produced = self.pv_prediction_wh[hour]
|
||||
(
|
||||
energy_feedin_grid_actual,
|
||||
energy_consumption_grid_actual,
|
||||
losses,
|
||||
eigenverbrauch,
|
||||
) = self.inverter.process_energy(energy_produced, consumption, hour)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if self.akku and self.ac_charge_hours[stunde] > 0.0:
|
||||
self.akku.set_charge_allowed_for_hour(1, stunde)
|
||||
geladene_menge, verluste_wh = self.akku.charge_energy(
|
||||
None, stunde, relative_power=self.ac_charge_hours[stunde]
|
||||
if self.battery and self.ac_charge_hours[hour] > 0.0:
|
||||
self.battery.set_charge_allowed_for_hour(1, hour)
|
||||
battery_charged_energy_actual, battery_losses_actual = self.battery.charge_energy(
|
||||
None, hour, relative_power=self.ac_charge_hours[hour]
|
||||
)
|
||||
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.akku.current_soc_percentage())
|
||||
verbrauch += geladene_menge
|
||||
verbrauch += verluste_wh
|
||||
netzbezug += geladene_menge
|
||||
netzbezug += verluste_wh
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
|
||||
# print(hour, " ", battery_charged_energy_actual, " ",self.ac_charge_hours[hour]," ",self.battery.current_soc_percentage())
|
||||
consumption += battery_charged_energy_actual
|
||||
consumption += battery_losses_actual
|
||||
energy_consumption_grid_actual += battery_charged_energy_actual
|
||||
energy_consumption_grid_actual += battery_losses_actual
|
||||
losses_wh_per_hour[hour_since_now] += battery_losses_actual
|
||||
|
||||
netzeinspeisung_wh_pro_stunde[stunde_since_now] = netzeinspeisung
|
||||
netzbezug_wh_pro_stunde[stunde_since_now] = netzbezug
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste
|
||||
last_wh_pro_stunde[stunde_since_now] = verbrauch
|
||||
electricity_price_per_hour[stunde_since_now] = self.strompreis_euro_pro_wh[stunde]
|
||||
feedin_energy_per_hour[hour_since_now] = energy_feedin_grid_actual
|
||||
consumption_energy_per_hour[hour_since_now] = energy_consumption_grid_actual
|
||||
losses_wh_per_hour[hour_since_now] += losses
|
||||
loads_energy_per_hour[hour_since_now] = consumption
|
||||
electricity_price_per_hour[hour_since_now] = self.elect_price_hourly[hour]
|
||||
|
||||
# Financial calculations
|
||||
kosten_euro_pro_stunde[stunde_since_now] = (
|
||||
netzbezug * self.strompreis_euro_pro_wh[stunde]
|
||||
costs_per_hour[hour_since_now] = (
|
||||
energy_consumption_grid_actual * self.elect_price_hourly[hour]
|
||||
)
|
||||
einnahmen_euro_pro_stunde[stunde_since_now] = (
|
||||
netzeinspeisung * self.einspeiseverguetung_euro_pro_wh_arr[stunde]
|
||||
revenue_per_hour[hour_since_now] = (
|
||||
energy_feedin_grid_actual * self.elect_revenue_per_hour_arr[hour]
|
||||
)
|
||||
|
||||
# Akku SOC tracking
|
||||
if self.akku:
|
||||
akku_soc_pro_stunde[stunde_since_now] = self.akku.current_soc_percentage()
|
||||
else:
|
||||
akku_soc_pro_stunde[stunde_since_now] = 0.0
|
||||
|
||||
# Total cost and return
|
||||
gesamtkosten_euro = np.nansum(kosten_euro_pro_stunde) - np.nansum(einnahmen_euro_pro_stunde)
|
||||
gesamtkosten_euro = np.nansum(costs_per_hour) - np.nansum(revenue_per_hour)
|
||||
|
||||
# Prepare output dictionary
|
||||
out: Dict[str, Union[np.ndarray, float]] = {
|
||||
"Last_Wh_pro_Stunde": last_wh_pro_stunde,
|
||||
"Netzeinspeisung_Wh_pro_Stunde": netzeinspeisung_wh_pro_stunde,
|
||||
"Netzbezug_Wh_pro_Stunde": netzbezug_wh_pro_stunde,
|
||||
"Kosten_Euro_pro_Stunde": kosten_euro_pro_stunde,
|
||||
"akku_soc_pro_stunde": akku_soc_pro_stunde,
|
||||
"Einnahmen_Euro_pro_Stunde": einnahmen_euro_pro_stunde,
|
||||
"Last_Wh_pro_Stunde": loads_energy_per_hour,
|
||||
"Netzeinspeisung_Wh_pro_Stunde": feedin_energy_per_hour,
|
||||
"Netzbezug_Wh_pro_Stunde": consumption_energy_per_hour,
|
||||
"Kosten_Euro_pro_Stunde": costs_per_hour,
|
||||
"akku_soc_pro_stunde": soc_per_hour,
|
||||
"Einnahmen_Euro_pro_Stunde": revenue_per_hour,
|
||||
"Gesamtbilanz_Euro": gesamtkosten_euro,
|
||||
"EAuto_SoC_pro_Stunde": eauto_soc_pro_stunde,
|
||||
"Gesamteinnahmen_Euro": np.nansum(einnahmen_euro_pro_stunde),
|
||||
"Gesamtkosten_Euro": np.nansum(kosten_euro_pro_stunde),
|
||||
"Verluste_Pro_Stunde": verluste_wh_pro_stunde,
|
||||
"Gesamt_Verluste": np.nansum(verluste_wh_pro_stunde),
|
||||
"EAuto_SoC_pro_Stunde": soc_ev_per_hour,
|
||||
"Gesamteinnahmen_Euro": np.nansum(revenue_per_hour),
|
||||
"Gesamtkosten_Euro": np.nansum(costs_per_hour),
|
||||
"Verluste_Pro_Stunde": losses_wh_per_hour,
|
||||
"Gesamt_Verluste": np.nansum(losses_wh_per_hour),
|
||||
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
|
||||
"Electricity_price": electricity_price_per_hour,
|
||||
}
|
||||
|
@@ -15,7 +15,7 @@
|
||||
"loadakkudoktor_year_energy": null,
|
||||
"longitude": null,
|
||||
"optimization_ev_available_charge_rates_percent": [],
|
||||
"optimization_hours": 24,
|
||||
"optimization_hours": 48,
|
||||
"optimization_penalty": null,
|
||||
"prediction_historic_hours": 48,
|
||||
"prediction_hours": 48,
|
||||
|
@@ -160,20 +160,20 @@ class Devices(SingletonMixin, DevicesBase):
|
||||
# Devices
|
||||
# TODO: Make devices class a container of device simulation providers.
|
||||
# Device simulations to be used are then enabled in the configuration.
|
||||
akku: ClassVar[Battery] = Battery(provider_id="GenericBattery")
|
||||
eauto: ClassVar[Battery] = Battery(provider_id="GenericBEV")
|
||||
battery: ClassVar[Battery] = Battery(provider_id="GenericBattery")
|
||||
ev: ClassVar[Battery] = Battery(provider_id="GenericBEV")
|
||||
home_appliance: ClassVar[HomeAppliance] = HomeAppliance(provider_id="GenericDishWasher")
|
||||
inverter: ClassVar[Inverter] = Inverter(
|
||||
self_consumption_predictor=SelfConsumptionPropabilityInterpolator,
|
||||
akku=akku,
|
||||
battery=battery,
|
||||
provider_id="GenericInverter",
|
||||
)
|
||||
|
||||
def update_data(self) -> None:
|
||||
"""Update device simulation data."""
|
||||
# Assure devices are set up
|
||||
self.akku.setup()
|
||||
self.eauto.setup()
|
||||
self.battery.setup()
|
||||
self.ev.setup()
|
||||
self.home_appliance.setup()
|
||||
self.inverter.setup()
|
||||
|
||||
@@ -190,10 +190,10 @@ class Devices(SingletonMixin, DevicesBase):
|
||||
|
||||
# Set initial state
|
||||
simulation_step = to_duration("1 hour")
|
||||
if self.akku:
|
||||
self.akku_soc_pro_stunde[0] = self.akku.current_soc_percentage()
|
||||
if self.eauto:
|
||||
self.eauto_soc_pro_stunde[0] = self.eauto.current_soc_percentage()
|
||||
if self.battery:
|
||||
self.akku_soc_pro_stunde[0] = self.battery.current_soc_percentage()
|
||||
if self.ev:
|
||||
self.eauto_soc_pro_stunde[0] = self.ev.current_soc_percentage()
|
||||
|
||||
# Get predictions for full device simulation time range
|
||||
# gesamtlast[stunde]
|
||||
@@ -235,19 +235,19 @@ class Devices(SingletonMixin, DevicesBase):
|
||||
self.home_appliance_wh_per_hour[stunde_since_now] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if self.eauto:
|
||||
if self.ev:
|
||||
if self.ev_charge_hours[hour] > 0:
|
||||
geladene_menge_eauto, verluste_eauto = self.eauto.charge_energy(
|
||||
geladene_menge_eauto, verluste_eauto = self.ev.charge_energy(
|
||||
None, hour, relative_power=self.ev_charge_hours[hour]
|
||||
)
|
||||
consumption += geladene_menge_eauto
|
||||
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
|
||||
self.eauto_soc_pro_stunde[stunde_since_now] = self.eauto.current_soc_percentage()
|
||||
self.eauto_soc_pro_stunde[stunde_since_now] = self.ev.current_soc_percentage()
|
||||
|
||||
# Process inverter logic
|
||||
grid_export, grid_import, losses, self_consumption = (0.0, 0.0, 0.0, 0.0)
|
||||
if self.akku:
|
||||
self.akku.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
|
||||
if self.battery:
|
||||
self.battery.set_charge_allowed_for_hour(self.dc_charge_hours[hour], hour)
|
||||
if self.inverter:
|
||||
generation = pvforecast_ac_power[hour]
|
||||
grid_export, grid_import, losses, self_consumption = self.inverter.process_energy(
|
||||
@@ -255,12 +255,12 @@ class Devices(SingletonMixin, DevicesBase):
|
||||
)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if self.akku and self.ac_charge_hours[hour] > 0.0:
|
||||
self.akku.set_charge_allowed_for_hour(1, hour)
|
||||
geladene_menge, verluste_wh = self.akku.charge_energy(
|
||||
if self.battery and self.ac_charge_hours[hour] > 0.0:
|
||||
self.battery.set_charge_allowed_for_hour(1, hour)
|
||||
geladene_menge, verluste_wh = self.battery.charge_energy(
|
||||
None, hour, relative_power=self.ac_charge_hours[hour]
|
||||
)
|
||||
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.akku.current_soc_percentage())
|
||||
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.battery.current_soc_percentage())
|
||||
consumption += geladene_menge
|
||||
grid_import += geladene_menge
|
||||
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
|
||||
@@ -278,9 +278,9 @@ class Devices(SingletonMixin, DevicesBase):
|
||||
grid_export * self.einspeiseverguetung_euro_pro_wh_arr[hour]
|
||||
)
|
||||
|
||||
# Akku SOC tracking
|
||||
if self.akku:
|
||||
self.akku_soc_pro_stunde[stunde_since_now] = self.akku.current_soc_percentage()
|
||||
# battery SOC tracking
|
||||
if self.battery:
|
||||
self.akku_soc_pro_stunde[stunde_since_now] = self.battery.current_soc_percentage()
|
||||
else:
|
||||
self.akku_soc_pro_stunde[stunde_since_now] = 0.0
|
||||
|
||||
|
@@ -19,7 +19,7 @@ class Inverter(DeviceBase):
|
||||
self,
|
||||
self_consumption_predictor: RegularGridInterpolator,
|
||||
parameters: Optional[InverterParameters] = None,
|
||||
akku: Optional[Battery] = None,
|
||||
battery: Optional[Battery] = None,
|
||||
provider_id: Optional[str] = None,
|
||||
):
|
||||
# Configuration initialisation
|
||||
@@ -29,13 +29,13 @@ class Inverter(DeviceBase):
|
||||
self.prefix = "inverter"
|
||||
# Parameter initialisiation
|
||||
self.parameters = parameters
|
||||
if akku is None:
|
||||
if battery is None:
|
||||
# For the moment raise exception
|
||||
# TODO: Make akku configurable by config
|
||||
# TODO: Make battery configurable by config
|
||||
error_msg = "Battery for PV inverter is mandatory."
|
||||
logger.error(error_msg)
|
||||
raise NotImplementedError(error_msg)
|
||||
self.akku = akku # Connection to a battery object
|
||||
self.battery = battery # Connection to a battery object
|
||||
self.self_consumption_predictor = self_consumption_predictor
|
||||
|
||||
self.initialised = False
|
||||
@@ -86,7 +86,7 @@ class Inverter(DeviceBase):
|
||||
|
||||
if remaining_load_evq > 0:
|
||||
# Akku muss den Restverbrauch decken
|
||||
from_battery, discharge_losses = self.akku.discharge_energy(
|
||||
from_battery, discharge_losses = self.battery.discharge_energy(
|
||||
remaining_load_evq, hour
|
||||
)
|
||||
remaining_load_evq -= from_battery # Restverbrauch nach Akkuentladung
|
||||
@@ -101,7 +101,9 @@ class Inverter(DeviceBase):
|
||||
|
||||
if remaining_power > 0:
|
||||
# Load battery with excess energy
|
||||
charged_energie, charge_losses = self.akku.charge_energy(remaining_power, hour)
|
||||
charged_energie, charge_losses = self.battery.charge_energy(
|
||||
remaining_power, hour
|
||||
)
|
||||
remaining_surplus = remaining_power - (charged_energie + charge_losses)
|
||||
|
||||
# Feed-in to the grid based on remaining capacity
|
||||
@@ -122,7 +124,7 @@ class Inverter(DeviceBase):
|
||||
available_ac_power = max(self.max_power_wh - generation, 0)
|
||||
|
||||
# Discharge battery to cover shortfall, if possible
|
||||
battery_discharge, discharge_losses = self.akku.discharge_energy(
|
||||
battery_discharge, discharge_losses = self.battery.discharge_energy(
|
||||
min(shortfall, available_ac_power), hour
|
||||
)
|
||||
losses += discharge_losses
|
||||
|
@@ -388,7 +388,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
else:
|
||||
self.ems.set_ev_charge_hours(np.full(self.config.prediction_hours, 0))
|
||||
|
||||
return self.ems.simuliere(self.ems.start_datetime.hour)
|
||||
return self.ems.simulate(self.ems.start_datetime.hour)
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
@@ -441,14 +441,14 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
individual.extra_data = ( # type: ignore[attr-defined]
|
||||
o["Gesamtbilanz_Euro"],
|
||||
o["Gesamt_Verluste"],
|
||||
parameters.eauto.min_soc_percentage - self.ems.eauto.current_soc_percentage()
|
||||
if parameters.eauto and self.ems.eauto
|
||||
parameters.eauto.min_soc_percentage - self.ems.ev.current_soc_percentage()
|
||||
if parameters.eauto and self.ems.ev
|
||||
else 0,
|
||||
)
|
||||
|
||||
# Adjust total balance with battery value and penalties for unmet SOC
|
||||
restwert_akku = (
|
||||
self.ems.akku.current_energy_content() * parameters.ems.preis_euro_pro_wh_akku
|
||||
self.ems.battery.current_energy_content() * parameters.ems.preis_euro_pro_wh_akku
|
||||
)
|
||||
gesamtbilanz += -restwert_akku
|
||||
|
||||
@@ -456,8 +456,8 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
gesamtbilanz += max(
|
||||
0,
|
||||
(
|
||||
parameters.eauto.min_soc_percentage - self.ems.eauto.current_soc_percentage()
|
||||
if parameters.eauto and self.ems.eauto
|
||||
parameters.eauto.min_soc_percentage - self.ems.ev.current_soc_percentage()
|
||||
if parameters.eauto and self.ems.ev
|
||||
else 0
|
||||
)
|
||||
* self.config.optimization_penalty,
|
||||
@@ -565,7 +565,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
self.ems.set_parameters(
|
||||
parameters.ems,
|
||||
inverter=inverter,
|
||||
eauto=eauto,
|
||||
ev=eauto,
|
||||
home_appliance=dishwasher,
|
||||
)
|
||||
self.ems.set_start_hour(start_hour)
|
||||
@@ -606,7 +606,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
"discharge_allowed": discharge.tolist(),
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": o,
|
||||
"eauto_obj": self.ems.eauto.to_dict(),
|
||||
"eauto_obj": self.ems.ev.to_dict(),
|
||||
"start_solution": start_solution,
|
||||
"spuelstart": washingstart_int,
|
||||
"extra_data": extra_data,
|
||||
@@ -622,7 +622,7 @@ class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixi
|
||||
"discharge_allowed": discharge,
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": SimulationResult(**o),
|
||||
"eauto_obj": self.ems.eauto,
|
||||
"eauto_obj": self.ems.ev,
|
||||
"start_solution": start_solution,
|
||||
"washingstart": washingstart_int,
|
||||
}
|
||||
|
Reference in New Issue
Block a user