EV Charge Parameters optional + AC Charge first try (Parameter Reduction)

This commit is contained in:
Andreas
2024-10-14 10:10:12 +02:00
committed by Andreas
parent 2807ec7978
commit 55842dba1d
5 changed files with 187 additions and 77 deletions

View File

@@ -8,7 +8,7 @@ from akkudoktoreos.class_akku import PVAkku
from akkudoktoreos.class_ems import EnergieManagementSystem
from akkudoktoreos.class_haushaltsgeraet import Haushaltsgeraet
from akkudoktoreos.class_inverter import Wechselrichter
from akkudoktoreos.config import moegliche_ladestroeme_in_prozent
from akkudoktoreos.config import possible_ev_charge_currents
from akkudoktoreos.visualize import visualisiere_ergebnisse
@@ -26,21 +26,47 @@ class optimization_problem:
self.strafe = strafe
self.opti_param = None
self.fixed_eauto_hours = prediction_hours - optimization_hours
self.possible_charge_values = moegliche_ladestroeme_in_prozent
self.possible_charge_values = possible_ev_charge_currents
self.verbose = verbose
self.fix_seed = fixed_seed
self.optimize_ev = True
# Set a fixed seed for random operations if provided
if fixed_seed is not None:
random.seed(fixed_seed)
def split_charge_discharge(self, discharge_hours_bin: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
"""
Split the input array `discharge_hours_bin` into two separate arrays:
- `charge`: Contains only the negative values from `discharge_hours_bin` (charging values).
- `discharge`: Contains only the positive values from `discharge_hours_bin` (discharging values).
Parameters:
- discharge_hours_bin (np.ndarray): Input array with both positive and negative values.
Returns:
- charge (np.ndarray): Array with negative values from `discharge_hours_bin`, other values set to 0.
- discharge (np.ndarray): Array with positive values from `discharge_hours_bin`, other values set to 0.
"""
# Convert the input list to a NumPy array, if it's not already
discharge_hours_bin = np.array(discharge_hours_bin)
# Create charge array: Keep only negative values, set the rest to 0
charge = -np.where(discharge_hours_bin < 0, discharge_hours_bin, 0)
charge = charge / np.max(charge)
# Create discharge array: Keep only positive values, set the rest to 0
discharge = np.where(discharge_hours_bin > 0, discharge_hours_bin, 0)
return charge, discharge
def split_individual(
self, individual: List[float]
) -> Tuple[List[int], List[float], Optional[int]]:
"""
Split the individual solution into its components:
1. Discharge hours (-1 (Charge),0 (Nothing),1 (Discharge)),
2. Electric vehicle charge hours (float),
2. Electric vehicle charge hours (possible_charge_values),
3. Dishwasher start time (integer if applicable).
"""
discharge_hours_bin = individual[: self.prediction_hours]
@@ -69,40 +95,60 @@ class optimization_problem:
# Initialize toolbox with attributes and operations
self.toolbox = base.Toolbox()
self.toolbox.register("attr_discharge_state", random.randint, -1, 1)
self.toolbox.register("attr_ev_charge_index", random.randint, 0, len(moegliche_ladestroeme_in_prozent) - 1)
self.toolbox.register("attr_discharge_state", random.randint, -5, 1)
if self.optimize_ev:
self.toolbox.register("attr_ev_charge_index", random.randint, 0, len(possible_ev_charge_currents) - 1)
self.toolbox.register("attr_int", random.randint, start_hour, 23)
# Register individual creation method based on household appliance parameter
if opti_param["haushaltsgeraete"] > 0:
self.toolbox.register(
"individual",
lambda: creator.Individual(
[self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)]
+ [self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)]
+ [self.toolbox.attr_int()]
),
)
else:
self.toolbox.register(
"individual",
lambda: creator.Individual(
[self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)]
+ [self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)]
),
)
# Function to create an individual based on the conditions
def create_individual():
# Start with discharge states for the individual
individual_components = [self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)]
# Add EV charge index values if optimize_ev is True
if self.optimize_ev:
individual_components += [self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)]
# Add the start time of the household appliance if it's being optimized
if self.opti_param["haushaltsgeraete"] > 0:
individual_components += [self.toolbox.attr_int()]
return creator.Individual(individual_components)
# Register individual creation function
self.toolbox.register("individual", create_individual)
# # Register individual creation method based on household appliance parameter
# if opti_param["haushaltsgeraete"] > 0:
# self.toolbox.register(
# "individual",
# lambda: creator.Individual(
# [self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)]
# + [self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)]
# + [self.toolbox.attr_int()]
# ),
# )
# else:
# self.toolbox.register(
# "individual",
# lambda: creator.Individual(
# [self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)]
# + [self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)]
# ),
# )
# Register population, mating, mutation, and selection functions
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
self.toolbox.register("mate", tools.cxTwoPoint)
#self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.1)
# Register separate mutation functions for each type of value:
# - Discharge state mutation (-1, 0, 1)
self.toolbox.register("mutate_discharge", tools.mutUniformInt, low=0, up=1, indpb=0.1)
# - Discharge state mutation (-5, 0, 1)
self.toolbox.register("mutate_discharge", tools.mutUniformInt, low=-5, up=1, indpb=0.1)
# - Float mutation for EV charging values
self.toolbox.register("mutate_ev_charge_index", tools.mutUniformInt, low=0, up=len(moegliche_ladestroeme_in_prozent) - 1, indpb=0.1)
self.toolbox.register("mutate_ev_charge_index", tools.mutUniformInt, low=0, up=len(possible_ev_charge_currents) - 1, indpb=0.1)
# - Start hour mutation for household devices
self.toolbox.register("mutate_hour", tools.mutUniformInt, low=start_hour, up=23, indpb=0.3)
self.toolbox.register("mutate_hour", tools.mutUniformInt, low=start_hour, up=23, indpb=0.1)
# Custom mutation function that applies type-specific mutations
def mutate(individual):
@@ -111,13 +157,15 @@ class optimization_problem:
individual[:self.prediction_hours]
)
# Mutate the EV charging indices
ev_charge_part = individual[self.prediction_hours : self.prediction_hours * 2]
ev_charge_part_mutated, = self.toolbox.mutate_ev_charge_index(ev_charge_part)
individual[self.prediction_hours : self.prediction_hours * 2] = ev_charge_part_mutated
if self.optimize_ev:
# Mutate the EV charging indices
ev_charge_part = individual[self.prediction_hours : self.prediction_hours * 2]
ev_charge_part_mutated, = self.toolbox.mutate_ev_charge_index(ev_charge_part)
ev_charge_part_mutated[self.prediction_hours - self.fixed_eauto_hours :] = [0] * self.fixed_eauto_hours
individual[self.prediction_hours : self.prediction_hours * 2] = ev_charge_part_mutated
# Mutate the appliance start hour if present
if len(individual) > self.prediction_hours * 2:
if self.opti_param["haushaltsgeraete"] > 0:
appliance_part = [individual[-1]]
appliance_part_mutated, = self.toolbox.mutate_hour(appliance_part)
individual[-1] = appliance_part_mutated[0]
@@ -145,17 +193,18 @@ class optimization_problem:
if self.opti_param.get("haushaltsgeraete", 0) > 0:
ems.set_haushaltsgeraet_start(spuelstart_int, global_start_hour=start_hour)
ems.set_akku_discharge_hours(discharge_hours_bin)
eautocharge_hours_index[self.prediction_hours - self.fixed_eauto_hours :] = [
0
] * self.fixed_eauto_hours
charge, discharge = self.split_charge_discharge(discharge_hours_bin)
ems.set_akku_discharge_hours(discharge)
ems.set_akku_charge_hours(charge)
#print(charge)
eautocharge_hours_float = [
moegliche_ladestroeme_in_prozent[i] for i in eautocharge_hours_index
possible_ev_charge_currents[i] for i in eautocharge_hours_index
]
ems.set_eauto_charge_hours(eautocharge_hours_float)
if self.optimize_ev:
ems.set_eauto_charge_hours(eautocharge_hours_float)
return ems.simuliere(start_hour)
def evaluate(
@@ -177,7 +226,7 @@ class optimization_problem:
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
discharge_hours_bin, eautocharge_hours_float, _ = self.split_individual(individual)
max_ladeleistung = np.max(moegliche_ladestroeme_in_prozent)
#max_ladeleistung = np.max(possible_ev_charge_currents)
# Small Penalty for not discharging
gesamtbilanz += sum(
@@ -185,11 +234,11 @@ class optimization_problem:
)
# Penalty for charging the electric vehicle during restricted hours
gesamtbilanz += sum(
self.strafe
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours)
if eautocharge_hours_float[i] != 0.0
)
# gesamtbilanz += sum(
# self.strafe
# for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours)
# if eautocharge_hours_float[i] != 0.0
# )
# Penalty for not meeting the minimum SOC (State of Charge) requirement
if parameter["eauto_min_soc"] - ems.eauto.ladezustand_in_prozent() <= 0.0:
@@ -232,14 +281,14 @@ class optimization_problem:
for _ in range(3):
population.insert(0, creator.Individual(start_solution))
# Run the evolutionary algorithm
#Run the evolutionary algorithm
algorithms.eaMuPlusLambda(
population,
self.toolbox,
mu=100,
lambda_=200,
cxpb=0.7,
mutpb=0.3,
lambda_=150,
cxpb=0.5,
mutpb=0.5,
ngen=ngen,
stats=stats,
halloffame=hof,
@@ -282,6 +331,10 @@ class optimization_problem:
)
akku.set_charge_per_hour(np.full(self.prediction_hours, 1))
self.optimize_ev = True
if parameter["eauto_min_soc"] - parameter["eauto_soc"] <0:
self.optimize_ev = False
eauto = PVAkku(
kapazitaet_wh=parameter["eauto_cap"],
hours=self.prediction_hours,
@@ -382,3 +435,4 @@ class optimization_problem:
"spuelstart": spuelstart_int,
"simulation_data": o,
}