mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-12-15 08:16:18 +00:00
Structure code in logically separated submodules (#188)
This commit is contained in:
199
src/akkudoktoreos/prediction/ems.py
Normal file
199
src/akkudoktoreos/prediction/ems.py
Normal file
@@ -0,0 +1,199 @@
|
||||
from datetime import datetime
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from pydantic import BaseModel, Field, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from akkudoktoreos.config import EOSConfig
|
||||
from akkudoktoreos.devices.battery import PVAkku
|
||||
from akkudoktoreos.devices.generic import Haushaltsgeraet
|
||||
from akkudoktoreos.devices.inverter import Wechselrichter
|
||||
|
||||
|
||||
class EnergieManagementSystemParameters(BaseModel):
|
||||
pv_prognose_wh: list[float] = Field(
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
|
||||
)
|
||||
strompreis_euro_pro_wh: list[float] = Field(
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals."
|
||||
)
|
||||
einspeiseverguetung_euro_pro_wh: list[float] | float = Field(
|
||||
description="A float or array of floats representing the feed-in compensation in euros per watt-hour."
|
||||
)
|
||||
preis_euro_pro_wh_akku: float
|
||||
gesamtlast: list[float] = Field(
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals."
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_list_length(self) -> Self:
|
||||
pv_prognose_length = len(self.pv_prognose_wh)
|
||||
if (
|
||||
pv_prognose_length != len(self.strompreis_euro_pro_wh)
|
||||
or pv_prognose_length != len(self.gesamtlast)
|
||||
or (
|
||||
isinstance(self.einspeiseverguetung_euro_pro_wh, list)
|
||||
and pv_prognose_length != len(self.einspeiseverguetung_euro_pro_wh)
|
||||
)
|
||||
):
|
||||
raise ValueError("Input lists have different lengths")
|
||||
return self
|
||||
|
||||
|
||||
class EnergieManagementSystem:
|
||||
def __init__(
|
||||
self,
|
||||
config: EOSConfig,
|
||||
parameters: EnergieManagementSystemParameters,
|
||||
eauto: Optional[PVAkku] = None,
|
||||
haushaltsgeraet: Optional[Haushaltsgeraet] = None,
|
||||
wechselrichter: Optional[Wechselrichter] = None,
|
||||
):
|
||||
self.akku = wechselrichter.akku
|
||||
self.gesamtlast = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prognose_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.strompreis_euro_pro_wh = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.einspeiseverguetung_euro_pro_wh_arr = (
|
||||
parameters.einspeiseverguetung_euro_pro_wh
|
||||
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
||||
else np.full(len(self.gesamtlast), parameters.einspeiseverguetung_euro_pro_wh, float)
|
||||
)
|
||||
self.eauto = eauto
|
||||
self.haushaltsgeraet = haushaltsgeraet
|
||||
self.wechselrichter = wechselrichter
|
||||
self.ac_charge_hours = np.full(config.prediction_hours, 0)
|
||||
self.dc_charge_hours = np.full(config.prediction_hours, 1)
|
||||
self.ev_charge_hours = np.full(config.prediction_hours, 0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: List[int]) -> None:
|
||||
self.akku.set_discharge_per_hour(ds)
|
||||
|
||||
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ac_charge_hours = ds
|
||||
|
||||
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.dc_charge_hours = ds
|
||||
|
||||
def set_ev_charge_hours(self, ds: List[int]) -> None:
|
||||
self.ev_charge_hours = ds
|
||||
|
||||
def set_haushaltsgeraet_start(self, ds: List[int], global_start_hour: int = 0) -> None:
|
||||
self.haushaltsgeraet.set_startzeitpunkt(ds, global_start_hour=global_start_hour)
|
||||
|
||||
def reset(self) -> None:
|
||||
self.eauto.reset()
|
||||
self.akku.reset()
|
||||
|
||||
def simuliere_ab_jetzt(self) -> dict:
|
||||
jetzt = datetime.now()
|
||||
start_stunde = jetzt.hour
|
||||
return self.simuliere(start_stunde)
|
||||
|
||||
def simuliere(self, start_stunde: int) -> dict:
|
||||
"""hour.
|
||||
|
||||
akku_soc_pro_stunde begin of the hour, initial hour state!
|
||||
last_wh_pro_stunde integral of last hour (end state)
|
||||
"""
|
||||
lastkurve_wh = self.gesamtlast
|
||||
assert (
|
||||
len(lastkurve_wh) == len(self.pv_prognose_wh) == len(self.strompreis_euro_pro_wh)
|
||||
), f"Array sizes do not match: Load Curve = {len(lastkurve_wh)}, PV Forecast = {len(self.pv_prognose_wh)}, Electricity Price = {len(self.strompreis_euro_pro_wh)}"
|
||||
|
||||
# Optimized total hours calculation
|
||||
ende = len(lastkurve_wh)
|
||||
total_hours = ende - start_stunde
|
||||
|
||||
# Pre-allocate arrays for the results, optimized for speed
|
||||
last_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
netzeinspeisung_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
netzbezug_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
kosten_euro_pro_stunde = np.full((total_hours), np.nan)
|
||||
einnahmen_euro_pro_stunde = np.full((total_hours), np.nan)
|
||||
akku_soc_pro_stunde = np.full((total_hours), np.nan)
|
||||
eauto_soc_pro_stunde = np.full((total_hours), np.nan)
|
||||
verluste_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
haushaltsgeraet_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
|
||||
# Set initial state
|
||||
akku_soc_pro_stunde[0] = self.akku.ladezustand_in_prozent()
|
||||
if self.eauto:
|
||||
eauto_soc_pro_stunde[0] = self.eauto.ladezustand_in_prozent()
|
||||
|
||||
for stunde in range(start_stunde, ende):
|
||||
stunde_since_now = stunde - start_stunde
|
||||
|
||||
# Accumulate loads and PV generation
|
||||
verbrauch = self.gesamtlast[stunde]
|
||||
verluste_wh_pro_stunde[stunde_since_now] = 0.0
|
||||
if self.haushaltsgeraet:
|
||||
ha_load = self.haushaltsgeraet.get_last_fuer_stunde(stunde)
|
||||
verbrauch += ha_load
|
||||
haushaltsgeraet_wh_pro_stunde[stunde_since_now] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if self.eauto and self.ev_charge_hours[stunde] > 0:
|
||||
geladene_menge_eauto, verluste_eauto = self.eauto.energie_laden(
|
||||
None, stunde, relative_power=self.ev_charge_hours[stunde]
|
||||
)
|
||||
verbrauch += geladene_menge_eauto
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
|
||||
|
||||
if self.eauto:
|
||||
eauto_soc_pro_stunde[stunde_since_now] = self.eauto.ladezustand_in_prozent()
|
||||
# Process inverter logic
|
||||
erzeugung = self.pv_prognose_wh[stunde]
|
||||
self.akku.set_charge_allowed_for_hour(self.dc_charge_hours[stunde], stunde)
|
||||
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (
|
||||
self.wechselrichter.energie_verarbeiten(erzeugung, verbrauch, stunde)
|
||||
)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if self.ac_charge_hours[stunde] > 0.0:
|
||||
self.akku.set_charge_allowed_for_hour(1, stunde)
|
||||
geladene_menge, verluste_wh = self.akku.energie_laden(
|
||||
None, stunde, relative_power=self.ac_charge_hours[stunde]
|
||||
)
|
||||
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.akku.ladezustand_in_prozent())
|
||||
verbrauch += geladene_menge
|
||||
netzbezug += geladene_menge
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
|
||||
|
||||
netzeinspeisung_wh_pro_stunde[stunde_since_now] = netzeinspeisung
|
||||
netzbezug_wh_pro_stunde[stunde_since_now] = netzbezug
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste
|
||||
last_wh_pro_stunde[stunde_since_now] = verbrauch
|
||||
|
||||
# Financial calculations
|
||||
kosten_euro_pro_stunde[stunde_since_now] = (
|
||||
netzbezug * self.strompreis_euro_pro_wh[stunde]
|
||||
)
|
||||
einnahmen_euro_pro_stunde[stunde_since_now] = (
|
||||
netzeinspeisung * self.einspeiseverguetung_euro_pro_wh_arr[stunde]
|
||||
)
|
||||
|
||||
# Akku SOC tracking
|
||||
akku_soc_pro_stunde[stunde_since_now] = self.akku.ladezustand_in_prozent()
|
||||
|
||||
# Total cost and return
|
||||
gesamtkosten_euro = np.nansum(kosten_euro_pro_stunde) - np.nansum(einnahmen_euro_pro_stunde)
|
||||
|
||||
# Prepare output dictionary
|
||||
out: Dict[str, Union[np.ndarray, float]] = {
|
||||
"Last_Wh_pro_Stunde": last_wh_pro_stunde,
|
||||
"Netzeinspeisung_Wh_pro_Stunde": netzeinspeisung_wh_pro_stunde,
|
||||
"Netzbezug_Wh_pro_Stunde": netzbezug_wh_pro_stunde,
|
||||
"Kosten_Euro_pro_Stunde": kosten_euro_pro_stunde,
|
||||
"akku_soc_pro_stunde": akku_soc_pro_stunde,
|
||||
"Einnahmen_Euro_pro_Stunde": einnahmen_euro_pro_stunde,
|
||||
"Gesamtbilanz_Euro": gesamtkosten_euro,
|
||||
"EAuto_SoC_pro_Stunde": eauto_soc_pro_stunde,
|
||||
"Gesamteinnahmen_Euro": np.nansum(einnahmen_euro_pro_stunde),
|
||||
"Gesamtkosten_Euro": np.nansum(kosten_euro_pro_stunde),
|
||||
"Verluste_Pro_Stunde": verluste_wh_pro_stunde,
|
||||
"Gesamt_Verluste": np.nansum(verluste_wh_pro_stunde),
|
||||
"Haushaltsgeraet_wh_pro_stunde": haushaltsgeraet_wh_pro_stunde,
|
||||
}
|
||||
|
||||
return out
|
||||
Reference in New Issue
Block a user