mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-12-13 15:26:17 +00:00
Wallbox Leistung wird von der Lastprognose abgezogen
This commit is contained in:
@@ -1,23 +1,22 @@
|
||||
from flask import Flask, jsonify, request
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timedelta
|
||||
from pprint import pprint
|
||||
import json, sys, os
|
||||
import requests, hashlib
|
||||
from dateutil import parser, tz
|
||||
|
||||
from dateutil import parser
|
||||
import pandas as pd
|
||||
|
||||
|
||||
class ForecastData:
|
||||
def __init__(self, date_time, dc_power, ac_power, windspeed_10m=None, temperature=None,ac_power_measurement=None):
|
||||
def __init__(self, date_time, dc_power, ac_power, windspeed_10m=None, temperature=None, ac_power_measurement=None):
|
||||
self.date_time = date_time
|
||||
self.dc_power = dc_power
|
||||
self.ac_power = ac_power
|
||||
self.windspeed_10m = windspeed_10m
|
||||
self.temperature = temperature
|
||||
self.ac_power_measurement = None
|
||||
|
||||
# Getter für die ForecastData-Attribute
|
||||
self.ac_power_measurement = ac_power_measurement
|
||||
|
||||
def get_date_time(self):
|
||||
return self.date_time
|
||||
|
||||
@@ -28,7 +27,7 @@ class ForecastData:
|
||||
return self.ac_power_measurement
|
||||
|
||||
def get_ac_power(self):
|
||||
if self.ac_power_measurement != None:
|
||||
if self.ac_power_measurement is not None:
|
||||
return self.ac_power_measurement
|
||||
else:
|
||||
return self.ac_power
|
||||
@@ -40,73 +39,63 @@ class ForecastData:
|
||||
return self.temperature
|
||||
|
||||
class PVForecast:
|
||||
def __init__(self, filepath=None, url=None, cache_dir='cache', prediction_hours = 48):
|
||||
def __init__(self, filepath=None, url=None, cache_dir='cache', prediction_hours=48):
|
||||
self.meta = {}
|
||||
self.forecast_data = []
|
||||
self.cache_dir = cache_dir
|
||||
self.prediction_hours = prediction_hours
|
||||
self.current_measurement = None
|
||||
|
||||
|
||||
if not os.path.exists(self.cache_dir):
|
||||
os.makedirs(self.cache_dir)
|
||||
if filepath:
|
||||
self.load_data_from_file(filepath)
|
||||
elif url:
|
||||
self.load_data_with_caching(url)
|
||||
|
||||
# Überprüfung nach dem Laden der Daten
|
||||
|
||||
if len(self.forecast_data) < self.prediction_hours:
|
||||
raise ValueError(f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt.")
|
||||
|
||||
def update_ac_power_measurement(self, date_time=None, ac_power_measurement=None):
|
||||
"""Aktualisiert einen DC-Leistungsmesswert oder fügt ihn hinzu."""
|
||||
found = False
|
||||
target_timezone = tz.gettz('Europe/Berlin')
|
||||
input_date_hour = date_time.astimezone(target_timezone).replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
|
||||
input_date_hour = date_time.replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
for forecast in self.forecast_data:
|
||||
forecast_date_hour = datetime.strptime(forecast.date_time, "%Y-%m-%dT%H:%M:%S.%f%z").astimezone(target_timezone).replace(minute=0, second=0, microsecond=0)
|
||||
|
||||
|
||||
#print(forecast_date_hour," ",input_date_hour)
|
||||
forecast_date_hour = parser.parse(forecast.date_time).replace(minute=0, second=0, microsecond=0)
|
||||
if forecast_date_hour == input_date_hour:
|
||||
forecast.ac_power_measurement = ac_power_measurement
|
||||
found = True
|
||||
break
|
||||
|
||||
# if not found:
|
||||
# # Erstelle ein neues ForecastData-Objekt, falls kein entsprechender Zeitstempel gefunden wurde
|
||||
# # Hier kannst du entscheiden, wie die anderen Werte gesetzt werden sollen, falls keine Vorhersage existiert
|
||||
# new_forecast = ForecastData(date_time, dc_power=None, ac_power=None, dc_power_measurement=dc_power_measurement)
|
||||
# self.forecast_data.append(new_forecast)
|
||||
# # Liste sortieren, um sie chronologisch zu ordnen
|
||||
# self.forecast_data.sort(key=lambda x: datetime.strptime(x.date_time, "%Y-%m-%dT%H:%M:%S.%f%z").replace(minute=0, second=0, microsecond=0))
|
||||
|
||||
|
||||
|
||||
def process_data(self, data):
|
||||
self.meta = data.get('meta', {})
|
||||
all_values = data.get('values', [])
|
||||
|
||||
# Berechnung der Summe der DC- und AC-Leistungen für jeden Zeitstempel
|
||||
|
||||
for i in range(len(all_values[0])): # Annahme, dass alle Listen gleich lang sind
|
||||
sum_dc_power = sum(values[i]['dcPower'] for values in all_values)
|
||||
sum_ac_power = sum(values[i]['power'] for values in all_values)
|
||||
|
||||
# Erstellen eines ForecastData-Objekts mit den summierten Werten
|
||||
|
||||
# Zeige die ursprünglichen und berechneten Zeitstempel an
|
||||
original_datetime = all_values[0][i].get('datetime')
|
||||
#print(original_datetime," ",sum_dc_power," ",all_values[0][i]['dcPower'])
|
||||
dt = datetime.strptime(original_datetime, "%Y-%m-%dT%H:%M:%S.%f%z")
|
||||
dt = dt.replace(tzinfo=None)
|
||||
#iso_datetime = parser.parse(original_datetime).isoformat() # Konvertiere zu ISO-Format
|
||||
#print()
|
||||
# Optional: 2 Stunden abziehen, um die Zeitanpassung zu testen
|
||||
#adjusted_datetime = parser.parse(original_datetime) - timedelta(hours=2)
|
||||
#print(f"Angepasste Zeitstempel: {adjusted_datetime.isoformat()}")
|
||||
|
||||
forecast = ForecastData(
|
||||
date_time=all_values[0][i].get('datetime'),
|
||||
date_time=dt, # Verwende angepassten Zeitstempel
|
||||
dc_power=sum_dc_power,
|
||||
ac_power=sum_ac_power,
|
||||
# Optional: Weitere Werte wie Windspeed und Temperature, falls benötigt
|
||||
windspeed_10m=all_values[0][i].get('windspeed_10m'),
|
||||
temperature=all_values[0][i].get('temperature')
|
||||
)
|
||||
|
||||
self.forecast_data.append(forecast)
|
||||
|
||||
|
||||
self.forecast_data.append(forecast)
|
||||
|
||||
def load_data_from_file(self, filepath):
|
||||
with open(filepath, 'r') as file:
|
||||
@@ -124,9 +113,9 @@ class PVForecast:
|
||||
self.load_data_from_url(url)
|
||||
|
||||
def load_data_with_caching(self, url):
|
||||
date = datetime.now().strftime("%Y-%m-%d")
|
||||
date = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url,date))
|
||||
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url, date))
|
||||
if os.path.exists(cache_file):
|
||||
with open(cache_file, 'r') as file:
|
||||
data = json.load(file)
|
||||
@@ -143,28 +132,16 @@ class PVForecast:
|
||||
return
|
||||
self.process_data(data)
|
||||
|
||||
def generate_cache_filename(self, url,date):
|
||||
# Erzeugt einen SHA-256 Hash der URL als Dateinamen
|
||||
def generate_cache_filename(self, url, date):
|
||||
cache_key = hashlib.sha256(f"{url}{date}".encode('utf-8')).hexdigest()
|
||||
#cache_path = os.path.join(self.cache_dir, cache_key)
|
||||
return f"cache_{cache_key}.json"
|
||||
|
||||
def get_forecast_data(self):
|
||||
return self.forecast_data
|
||||
|
||||
|
||||
# def get_forecast_for_date(self, input_date_str):
|
||||
# input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
|
||||
# daily_forecast_obj = [data for data in self.forecast_data if datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date() == input_date.date()]
|
||||
# daily_forecast = []
|
||||
# for d in daily_forecast_obj:
|
||||
# daily_forecast.append(d.get_ac_power())
|
||||
|
||||
# return np.array(daily_forecast)
|
||||
|
||||
def get_temperature_forecast_for_date(self, input_date_str):
|
||||
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
|
||||
daily_forecast_obj = [data for data in self.forecast_data if datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date() == input_date.date()]
|
||||
daily_forecast_obj = [data for data in self.forecast_data if parser.parse(data.get_date_time()).date() == input_date.date()]
|
||||
daily_forecast = []
|
||||
for d in daily_forecast_obj:
|
||||
daily_forecast.append(d.get_temperature())
|
||||
@@ -177,10 +154,10 @@ class PVForecast:
|
||||
date_range_forecast = []
|
||||
|
||||
for data in self.forecast_data:
|
||||
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
|
||||
#print(data.get_date_time())
|
||||
data_date = data.get_date_time().date()#parser.parse(data.get_date_time()).date()
|
||||
if start_date <= data_date <= end_date:
|
||||
date_range_forecast.append(data)
|
||||
print(data.get_date_time()," ",data.get_ac_power())
|
||||
|
||||
ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
|
||||
|
||||
@@ -192,28 +169,36 @@ class PVForecast:
|
||||
date_range_forecast = []
|
||||
|
||||
for data in self.forecast_data:
|
||||
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
|
||||
data_date = data.get_date_time().date()
|
||||
if start_date <= data_date <= end_date:
|
||||
date_range_forecast.append(data)
|
||||
|
||||
forecast_data = date_range_forecast
|
||||
temperature_forecast = [data.get_temperature() for data in forecast_data]
|
||||
temperature_forecast = [data.get_temperature() for data in date_range_forecast]
|
||||
return np.array(temperature_forecast)[:self.prediction_hours]
|
||||
|
||||
|
||||
def get_forecast_dataframe(self):
|
||||
# Wandelt die Vorhersagedaten in ein Pandas DataFrame um
|
||||
data = [{
|
||||
'date_time': f.get_date_time(),
|
||||
'dc_power': f.get_dc_power(),
|
||||
'ac_power': f.get_ac_power(),
|
||||
'windspeed_10m': f.get_windspeed_10m(),
|
||||
'temperature': f.get_temperature()
|
||||
} for f in self.forecast_data]
|
||||
|
||||
# Erstelle ein DataFrame
|
||||
df = pd.DataFrame(data)
|
||||
return df
|
||||
|
||||
|
||||
def print_ac_power_and_measurement(self):
|
||||
"""Druckt die DC-Leistung und das Messwert für jede Stunde."""
|
||||
"""Druckt die DC-Leistung und den Messwert für jede Stunde."""
|
||||
for forecast in self.forecast_data:
|
||||
date_time = forecast.date_time
|
||||
|
||||
|
||||
print(f"Zeit: {date_time}, DC: {forecast.dc_power}, AC: {forecast.ac_power}, Messwert: {forecast.ac_power_measurement} AC GET: {forecast.get_ac_power()}")
|
||||
|
||||
|
||||
print(f"Zeit: {date_time}, DC: {forecast.dc_power}, AC: {forecast.ac_power}, Messwert: {forecast.ac_power_measurement}, AC GET: {forecast.get_ac_power()}")
|
||||
|
||||
# Beispiel für die Verwendung der Klasse
|
||||
if __name__ == '__main__':
|
||||
date_now = datetime.now()
|
||||
forecast = PVForecast(prediction_hours = 24, url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||
forecast = PVForecast(prediction_hours=24, url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||
forecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=1000)
|
||||
forecast.print_ac_power_and_measurement()
|
||||
|
||||
Reference in New Issue
Block a user