mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 00:45:22 +00:00
Price Forceast (use mean of last 7 days instead of repeat)
This commit is contained in:
parent
155c116819
commit
6aa8838e5b
@ -3,8 +3,7 @@ import json
|
||||
import zoneinfo
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Sequence
|
||||
|
||||
from typing import Any, Sequence, Optional
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
@ -37,10 +36,12 @@ class HourlyElectricityPriceForecast:
|
||||
if not self.cache_dir.is_dir():
|
||||
raise SetupIncomplete(f"Output path does not exist: {self.cache_dir}.")
|
||||
|
||||
self.seven_day_mean = None
|
||||
self.cache_time_file = self.cache_dir / "cache_timestamp.txt"
|
||||
self.prices = self.load_data(source)
|
||||
self.charges = charges
|
||||
self.prediction_hours = config.eos.prediction_hours
|
||||
self.seven_day_mean = self.get_average_price_last_7_days()
|
||||
|
||||
def load_data(self, source: str | Path) -> list[dict[str, Any]]:
|
||||
cache_file = self.get_cache_file(source)
|
||||
@ -116,10 +117,66 @@ class HourlyElectricityPriceForecast:
|
||||
|
||||
return np.array(date_prices) / (1000.0 * 100.0) + self.charges
|
||||
|
||||
def get_price_for_daterange(self, start_date_str: str, end_date_str: str) -> np.ndarray:
|
||||
def get_average_price_last_7_days(self, end_date_str: Optional[str] = None) -> np.ndarray:
|
||||
"""
|
||||
Calculate the hourly average electricity price for the last 7 days.
|
||||
|
||||
Parameters:
|
||||
end_date_str (Optional[str]): End date in the format "YYYY-MM-DD".
|
||||
If not provided, today's date will be used.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A NumPy array of 24 elements, each representing the hourly
|
||||
average price over the last 7 days.
|
||||
|
||||
Raises:
|
||||
ValueError: If there is insufficient data to calculate the averages.
|
||||
"""
|
||||
# Determine the end date (use today's date if not provided)
|
||||
if end_date_str is None:
|
||||
end_date = datetime.now().date() - timedelta(days=1)
|
||||
else:
|
||||
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
|
||||
|
||||
if self.seven_day_mean != None:
|
||||
return self.seven_day_mean
|
||||
|
||||
# Calculate the start date (7 days before the end date)
|
||||
start_date = end_date - timedelta(days=7)
|
||||
|
||||
# Convert dates to strings
|
||||
start_date_str = start_date.strftime("%Y-%m-%d")
|
||||
end_date_str = end_date.strftime("%Y-%m-%d")
|
||||
|
||||
# Retrieve price data for the specified date range
|
||||
price_data = self.get_price_for_daterange(start_date_str, end_date_str)
|
||||
|
||||
# Ensure there is enough data for 7 full days (7 days × 24 hours)
|
||||
if price_data.size < 7 * 24:
|
||||
raise ValueError(
|
||||
"Not enough data to calculate the average for the last 7 days.", price_data
|
||||
)
|
||||
# Calculate the overall average price across all data
|
||||
# overall_average_price = np.mean(price_data)
|
||||
|
||||
# Create an array of 24 hourly values filled with the overall average
|
||||
# average_prices = np.full(24, overall_average_price)
|
||||
|
||||
# print("Overall AVG (duplicated for 24 hours):", average_prices)
|
||||
# return average_prices
|
||||
# Reshape the data into a 7x24 matrix (7 rows for days, 24 columns for hours)
|
||||
price_matrix = price_data.reshape(-1, 24)
|
||||
|
||||
# Calculate the average price for each hour across the 7 days
|
||||
average_prices = np.mean(price_matrix, axis=0)
|
||||
# print("AVG:", average_prices)
|
||||
return average_prices
|
||||
|
||||
def get_price_for_daterange(
|
||||
self, start_date_str: str, end_date_str: str, repeat: bool = False
|
||||
) -> np.ndarray:
|
||||
"""Returns all prices between the start and end dates."""
|
||||
print(start_date_str)
|
||||
print(end_date_str)
|
||||
|
||||
start_date_utc = datetime.strptime(start_date_str, "%Y-%m-%d").replace(tzinfo=timezone.utc)
|
||||
end_date_utc = datetime.strptime(end_date_str, "%Y-%m-%d").replace(tzinfo=timezone.utc)
|
||||
start_date = start_date_utc.astimezone(zoneinfo.ZoneInfo("Europe/Berlin"))
|
||||
@ -134,11 +191,22 @@ class HourlyElectricityPriceForecast:
|
||||
if daily_prices.size == 24:
|
||||
price_list.extend(daily_prices)
|
||||
start_date += timedelta(days=1)
|
||||
|
||||
# print(date_str, ":", daily_prices)
|
||||
price_list_np = np.array(price_list)
|
||||
|
||||
# If prediction hours are greater than 0, reshape the price list
|
||||
if self.prediction_hours > 0:
|
||||
price_list_np = repeat_to_shape(price_list_np, (self.prediction_hours,))
|
||||
print(price_list_np)
|
||||
# If prediction hours are greater than 0 and repeat is True
|
||||
|
||||
if self.prediction_hours > 0 and repeat:
|
||||
# Check if price_list_np is shorter than prediction_hours
|
||||
if price_list_np.size < self.prediction_hours:
|
||||
# Repeat the seven_day_mean array to cover the missing hours
|
||||
repeat_count = (self.prediction_hours // self.seven_day_mean.size) + 1
|
||||
additional_values = np.tile(self.seven_day_mean, repeat_count)[
|
||||
: self.prediction_hours - price_list_np.size
|
||||
]
|
||||
|
||||
# Concatenate existing values with the repeated values
|
||||
price_list_np = np.concatenate((price_list_np, additional_values))
|
||||
|
||||
return price_list_np
|
||||
|
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Annotated, Any, Dict, List, Optional
|
||||
|
||||
@ -59,15 +59,23 @@ class PdfResponse(FileResponse):
|
||||
@app.get("/strompreis")
|
||||
def fastapi_strompreis() -> list[float]:
|
||||
# Get the current date and the end date based on prediction hours
|
||||
date_now, date = get_start_enddate(config.eos.prediction_hours, startdate=datetime.now().date())
|
||||
date_start_pred, date_end = get_start_enddate(
|
||||
config.eos.prediction_hours, startdate=datetime.now().date()
|
||||
)
|
||||
date_start = (datetime.now().date() - timedelta(days=8)).strftime("%Y-%m-%d")
|
||||
price_forecast = HourlyElectricityPriceForecast(
|
||||
source=f"https://api.akkudoktor.net/prices?start={date_now}&end={date}",
|
||||
source=f"https://api.akkudoktor.net/prices?start={date_start}&end={date_end}",
|
||||
config=config,
|
||||
use_cache=False,
|
||||
)
|
||||
# seven Day mean
|
||||
specific_date_prices = price_forecast.get_price_for_daterange(
|
||||
date_now, date
|
||||
date_start, date_end
|
||||
) # Fetch prices for the specified date range
|
||||
|
||||
specific_date_prices = price_forecast.get_price_for_daterange(
|
||||
date_start_pred, date_end, repeat=True
|
||||
)
|
||||
return specific_date_prices.tolist()
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user