optimization states for AC, DC and IDLE now similar probab. Also AC states taken from config. Maybe a single config option for AC and E-Auto States is sensefull. (#242)

* optimization states for AC, DC and IDLE now similar probab. Also AC states taken from config. Maybe a single config option for AC and E-Auto States is sensefull.
 * test_class_optimize: Update testdata
 * Write pdf and json to test/testdata/new.... so it can be analyzed
   manually or just copied as new expected result.
 * workflow: Upload pytest optimization result artifacts (pdf, json)
This commit is contained in:
Andreas
2024-12-15 15:32:58 +01:00
committed by GitHub
parent aa334d0b61
commit 763926d8e8
8 changed files with 813 additions and 865 deletions

View File

@@ -37,10 +37,7 @@ def compare_dict(actual: dict[str, Any], expected: dict[str, Any]):
("optimize_input_2.json", "optimize_result_2_full.json", 400),
],
)
@patch("akkudoktoreos.optimization.genetic.visualisiere_ergebnisse")
def test_optimize(
visualisiere_ergebnisse_patch, fn_in: str, fn_out: str, ngen: int, is_full_run: bool
):
def test_optimize(fn_in: str, fn_out: str, ngen: int, is_full_run: bool):
"""Test optimierung_ems."""
# Assure configuration holds the correct values
config_eos = get_config()
@@ -52,8 +49,12 @@ def test_optimize(
input_data = OptimizationParameters(**json.load(f_in))
file = DIR_TESTDATA / fn_out
with file.open("r") as f_out:
expected_result = OptimizeResponse(**json.load(f_out))
# In case a new test case is added, we don't want to fail here, so the new output is written to disk before
try:
with file.open("r") as f_out:
expected_result = OptimizeResponse(**json.load(f_out))
except FileNotFoundError:
pass
opt_class = optimization_problem(fixed_seed=42)
start_hour = 10
@@ -61,15 +62,34 @@ def test_optimize(
if ngen > 10 and not is_full_run:
pytest.skip()
# Call the optimization function
ergebnis = opt_class.optimierung_ems(parameters=input_data, start_hour=start_hour, ngen=ngen)
# with open(f"new_{fn_out}", "w") as f_out:
# f_out.write(ergebnis.model_dump_json(indent=4, exclude_unset=True))
visualize_filename = str((DIR_TESTDATA / f"new_{fn_out}").with_suffix(".pdf"))
# Assert that the output contains all expected entries.
# This does not assert that the optimization always gives the same result!
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
compare_dict(ergebnis.model_dump(), expected_result.model_dump())
def visualize_to_file(*args, **kwargs):
from akkudoktoreos.visualize import visualisiere_ergebnisse
# The function creates a visualization result PDF as a side-effect.
visualisiere_ergebnisse_patch.assert_called_once()
# Write test output pdf to file, so we can look at it manually
kwargs["filename"] = visualize_filename
return visualisiere_ergebnisse(*args, **kwargs)
with patch(
"akkudoktoreos.optimization.genetic.visualisiere_ergebnisse", side_effect=visualize_to_file
) as visualisiere_ergebnisse_patch:
# Call the optimization function
ergebnis = opt_class.optimierung_ems(
parameters=input_data, start_hour=start_hour, ngen=ngen
)
# Write test output to file, so we can take it as new data on intended change
with open(DIR_TESTDATA / f"new_{fn_out}", "w") as f_out:
f_out.write(ergebnis.model_dump_json(indent=4, exclude_unset=True))
assert ergebnis.result.Gesamtbilanz_Euro == pytest.approx(
expected_result.result.Gesamtbilanz_Euro
)
# Assert that the output contains all expected entries.
# This does not assert that the optimization always gives the same result!
# Reproducibility and mathematical accuracy should be tested on the level of individual components.
compare_dict(ergebnis.model_dump(), expected_result.model_dump())
# The function creates a visualization result PDF as a side-effect.
visualisiere_ergebnisse_patch.assert_called_once()