mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Haushaltsgeräte wie z.B. Spülmaschine
flask / Optimierung besser getrennt Optimierung Bug, bei mehrfahcen neustart
This commit is contained in:
parent
f817504528
commit
7feb52d854
219
flask_server.py
219
flask_server.py
@ -18,221 +18,46 @@ import matplotlib.pyplot as plt
|
||||
import string
|
||||
from datetime import datetime
|
||||
from deap import base, creator, tools, algorithms
|
||||
from modules.class_optimize import *
|
||||
import numpy as np
|
||||
import random
|
||||
import os
|
||||
|
||||
# if ist_dst_wechsel(datetime.now()):
|
||||
# prediction_hours = 23 # Anpassung auf 23 Stunden für DST-Wechseltage
|
||||
# else:
|
||||
# prediction_hours = 24 # Standardwert für Tage ohne DST-Wechsel
|
||||
prediction_hours = 24
|
||||
start_hour = datetime.now().hour
|
||||
hohe_strafe = 10.0
|
||||
# print(prediction_hours)
|
||||
# sys.exit()
|
||||
|
||||
def isfloat(num):
|
||||
try:
|
||||
float(num)
|
||||
return True
|
||||
except:
|
||||
return False
|
||||
|
||||
|
||||
def evaluate_inner(individual, ems):
|
||||
|
||||
discharge_hours_bin = individual[0::2]
|
||||
eautocharge_hours_float = individual[1::2]
|
||||
|
||||
#print(discharge_hours_bin)
|
||||
#print(len(eautocharge_hours_float))
|
||||
ems.reset()
|
||||
ems.set_akku_discharge_hours(discharge_hours_bin)
|
||||
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
return o
|
||||
|
||||
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
|
||||
def evaluate(individual,ems,parameter):
|
||||
o = evaluate_inner(individual,ems)
|
||||
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"]
|
||||
|
||||
# Überprüfung, ob der Mindest-SoC erreicht wird
|
||||
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
|
||||
|
||||
|
||||
strafe = 0.0
|
||||
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * hohe_strafe )
|
||||
|
||||
# print(ems.eauto.charge_array)
|
||||
# print(ems.eauto.ladezustand_in_prozent())
|
||||
# print(strafe)
|
||||
gesamtbilanz += strafe
|
||||
gesamtbilanz += o["Gesamt_Verluste"]/1000.0
|
||||
return (gesamtbilanz,)
|
||||
|
||||
# Werkzeug-Setup
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
toolbox = base.Toolbox()
|
||||
toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.attr_bool,toolbox.attr_bool), n=prediction_hours)
|
||||
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
|
||||
toolbox.register("mate", tools.cxTwoPoint)
|
||||
toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
||||
toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize(start_solution=None):
|
||||
population = toolbox.population(n=100)
|
||||
hof = tools.HallOfFame(1)
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats.register("avg", np.mean)
|
||||
stats.register("min", np.min)
|
||||
stats.register("max", np.max)
|
||||
|
||||
print("Start:",start_solution)
|
||||
|
||||
if start_solution is not None and start_solution != -1:
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
|
||||
#algorithms.eaMuPlusLambda(population, toolbox, 100, 200, cxpb=0.3, mutpb=0.3, ngen=500, stats=stats, halloffame=hof, verbose=True)
|
||||
algorithms.eaSimple(population, toolbox, cxpb=0.8, mutpb=0.8, ngen=400, stats=stats, halloffame=hof, verbose=True)
|
||||
return hof[0]
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
# Dummy-Funktion für die Durchführung der Simulation/Optimierung
|
||||
# Ersetzen Sie diese Logik durch Ihren eigentlichen Optimierungscode
|
||||
def durchfuehre_simulation(parameter):
|
||||
|
||||
start_hour = datetime.now().hour
|
||||
|
||||
############
|
||||
# Parameter
|
||||
############
|
||||
date = (datetime.now().date() + timedelta(hours = prediction_hours)).strftime("%Y-%m-%d")
|
||||
date_now = datetime.now().strftime("%Y-%m-%d")
|
||||
|
||||
akku_size = parameter['pv_akku_cap'] # Wh
|
||||
year_energy = parameter['year_energy'] #2000*1000 #Wh
|
||||
|
||||
einspeiseverguetung_euro_pro_wh = np.full(prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
|
||||
|
||||
max_heizleistung = parameter['max_heizleistung'] #1000 # 5 kW Heizleistung
|
||||
wp = Waermepumpe(max_heizleistung,prediction_hours)
|
||||
|
||||
pv_forecast_url = parameter['pv_forecast_url'] #"https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m"
|
||||
|
||||
akku = PVAkku(kapazitaet_wh=akku_size,hours=prediction_hours,start_soc_prozent=parameter["pv_soc"])
|
||||
discharge_array = np.full(prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||
laden_moeglich = np.full(prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||
|
||||
|
||||
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
||||
eauto.set_charge_per_hour(laden_moeglich)
|
||||
min_soc_eauto = parameter['eauto_min_soc']
|
||||
|
||||
start_params = parameter['start_solution']
|
||||
|
||||
gesamtlast = Gesamtlast()
|
||||
|
||||
###############
|
||||
# Load Forecast
|
||||
###############
|
||||
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
||||
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
|
||||
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
|
||||
gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
|
||||
|
||||
###############
|
||||
# PV Forecast
|
||||
###############
|
||||
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
||||
PVforecast = PVForecast(prediction_hours = prediction_hours, url=pv_forecast_url)
|
||||
#print("PVPOWER",parameter['pvpowernow'])
|
||||
if isfloat(parameter['pvpowernow']):
|
||||
PVforecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=float(parameter['pvpowernow']))
|
||||
#PVforecast.print_ac_power_and_measurement()
|
||||
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
||||
|
||||
|
||||
|
||||
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
|
||||
opt_class = optimization_problem(prediction_hours=24, strafe=10)
|
||||
|
||||
|
||||
###############
|
||||
# Strompreise
|
||||
###############
|
||||
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
|
||||
#price_forecast = HourlyElectricityPriceForecast(source=filepath)
|
||||
price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.net/prices?start="+date_now+"&end="+date+"")
|
||||
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
|
||||
|
||||
###############
|
||||
# WP
|
||||
##############
|
||||
leistung_wp = wp.simulate_24h(temperature_forecast)
|
||||
gesamtlast.hinzufuegen("Heatpump", leistung_wp)
|
||||
|
||||
ems = EnergieManagementSystem(akku=akku, gesamtlast = gesamtlast, pv_prognose_wh=pv_forecast, strompreis_euro_pro_wh=specific_date_prices, einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh, eauto=eauto)
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
|
||||
|
||||
|
||||
def evaluate_wrapper(individual):
|
||||
return evaluate(individual, ems, parameter)
|
||||
|
||||
|
||||
toolbox.register("evaluate", evaluate_wrapper)
|
||||
|
||||
print()
|
||||
print("START:",start_params)
|
||||
print()
|
||||
start_solution = optimize(start_params)
|
||||
best_solution = start_solution
|
||||
o = evaluate_inner(best_solution, ems)
|
||||
eauto = ems.eauto.to_dict()
|
||||
discharge_hours_bin = best_solution[0::2]
|
||||
eautocharge_hours_float = best_solution[1::2]
|
||||
|
||||
#print(o)
|
||||
|
||||
visualisiere_ergebnisse(gesamtlast, pv_forecast, specific_date_prices, o,best_solution[0::2],best_solution[1::2] , temperature_forecast, start_hour, prediction_hours,einspeiseverguetung_euro_pro_wh)
|
||||
|
||||
os.system("scp visualisierungsergebnisse.pdf andreas@192.168.1.135:")
|
||||
|
||||
#print(eauto)
|
||||
return {"discharge_hours_bin":discharge_hours_bin, "eautocharge_hours_float":eautocharge_hours_float ,"result":o ,"eauto_obj":eauto,"start_solution":best_solution}
|
||||
|
||||
|
||||
|
||||
|
||||
@app.route('/simulation', methods=['POST'])
|
||||
def simulation():
|
||||
@app.route('/optimize', methods=['POST'])
|
||||
def flask_optimize():
|
||||
if request.method == 'POST':
|
||||
parameter = request.json
|
||||
|
||||
# Erforderliche Parameter prüfen
|
||||
erforderliche_parameter = [ 'pv_akku_cap', 'year_energy',"einspeiseverguetung_euro_pro_wh", 'max_heizleistung', 'pv_forecast_url', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc","start_solution","pvpowernow"]
|
||||
erforderliche_parameter = [ 'pv_akku_cap', 'year_energy',"einspeiseverguetung_euro_pro_wh", 'max_heizleistung', 'pv_forecast_url', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc","start_solution","pvpowernow","haushaltsgeraet_dauer","haushaltsgeraet_wh"]
|
||||
for p in erforderliche_parameter:
|
||||
if p not in parameter:
|
||||
return jsonify({"error": f"Fehlender Parameter: {p}"}), 400
|
||||
|
||||
# Simulation durchführen
|
||||
ergebnis = durchfuehre_simulation(parameter)
|
||||
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=datetime.now().hour)
|
||||
|
||||
return jsonify(ergebnis)
|
||||
|
||||
@app.route('/optimize_worst_case', methods=['POST'])
|
||||
def flask_optimize_worst_case():
|
||||
if request.method == 'POST':
|
||||
parameter = request.json
|
||||
|
||||
# Erforderliche Parameter prüfen
|
||||
erforderliche_parameter = [ 'pv_akku_cap', 'year_energy',"einspeiseverguetung_euro_pro_wh", 'max_heizleistung', 'pv_forecast_url', 'eauto_min_soc', "eauto_cap","eauto_charge_efficiency","eauto_charge_power","eauto_soc","pv_soc","start_solution","pvpowernow","haushaltsgeraet_dauer","haushaltsgeraet_wh"]
|
||||
for p in erforderliche_parameter:
|
||||
if p not in parameter:
|
||||
return jsonify({"error": f"Fehlender Parameter: {p}"}), 400
|
||||
|
||||
# Simulation durchführen
|
||||
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=datetime.now().hour, worst_case=True)
|
||||
|
||||
return jsonify(ergebnis)
|
||||
|
||||
|
@ -3,7 +3,7 @@ from pprint import pprint
|
||||
|
||||
|
||||
class EnergieManagementSystem:
|
||||
def __init__(self, akku=None, pv_prognose_wh=None, strompreis_euro_pro_wh=None, einspeiseverguetung_euro_pro_wh=None, eauto=None, gesamtlast=None):
|
||||
def __init__(self, akku=None, pv_prognose_wh=None, strompreis_euro_pro_wh=None, einspeiseverguetung_euro_pro_wh=None, eauto=None, gesamtlast=None, haushaltsgeraet=None):
|
||||
self.akku = akku
|
||||
#self.lastkurve_wh = lastkurve_wh
|
||||
self.gesamtlast = gesamtlast
|
||||
@ -11,12 +11,17 @@ class EnergieManagementSystem:
|
||||
self.strompreis_euro_pro_wh = strompreis_euro_pro_wh # Strompreis in Cent pro Wh
|
||||
self.einspeiseverguetung_euro_pro_wh = einspeiseverguetung_euro_pro_wh # Einspeisevergütung in Cent pro Wh
|
||||
self.eauto = eauto
|
||||
self.haushaltsgeraet = haushaltsgeraet
|
||||
|
||||
|
||||
def set_akku_discharge_hours(self, ds):
|
||||
self.akku.set_discharge_per_hour(ds)
|
||||
|
||||
def set_eauto_charge_hours(self, ds):
|
||||
self.eauto.set_charge_per_hour(ds)
|
||||
|
||||
def set_haushaltsgeraet_start(self, ds, global_start_hour=0):
|
||||
self.haushaltsgeraet.set_startzeitpunkt(ds,global_start_hour=global_start_hour)
|
||||
|
||||
def reset(self):
|
||||
self.eauto.reset()
|
||||
@ -43,24 +48,27 @@ class EnergieManagementSystem:
|
||||
akku_soc_pro_stunde = []
|
||||
eauto_soc_pro_stunde = []
|
||||
verluste_wh_pro_stunde = []
|
||||
haushaltsgeraet_wh_pro_stunde = []
|
||||
lastkurve_wh = self.gesamtlast.gesamtlast_berechnen()
|
||||
|
||||
|
||||
assert len(lastkurve_wh) == len(self.pv_prognose_wh) == len(self.strompreis_euro_pro_wh), f"Arraygrößen stimmen nicht überein: Lastkurve = {len(lastkurve_wh)}, PV-Prognose = {len(self.pv_prognose_wh)}, Strompreis = {len(self.strompreis_euro_pro_wh)}"
|
||||
|
||||
ende = min( len(lastkurve_wh),len(self.pv_prognose_wh), len(self.strompreis_euro_pro_wh))
|
||||
# print(len(lastkurve_wh), " ",len(self.pv_prognose_wh)," ", len(self.strompreis_euro_pro_wh))
|
||||
|
||||
# sys.exit()
|
||||
|
||||
# Berechnet das Ende basierend auf der Länge der Lastkurve
|
||||
for stunde in range(start_stunde, ende):
|
||||
|
||||
# Anpassung, um sicherzustellen, dass Indizes korrekt sind
|
||||
verbrauch = lastkurve_wh[stunde]
|
||||
verbrauch = lastkurve_wh[stunde]
|
||||
if self.haushaltsgeraet != None:
|
||||
verbrauch = verbrauch + self.haushaltsgeraet.get_last_fuer_stunde(stunde)
|
||||
haushaltsgeraet_wh_pro_stunde.append(self.haushaltsgeraet.get_last_fuer_stunde(stunde))
|
||||
else:
|
||||
haushaltsgeraet_wh_pro_stunde.append(0)
|
||||
erzeugung = self.pv_prognose_wh[stunde]
|
||||
strompreis = self.strompreis_euro_pro_wh[stunde] if stunde < len(self.strompreis_euro_pro_wh) else self.strompreis_euro_pro_wh[-1]
|
||||
verluste_wh_pro_stunde.append(0.0)
|
||||
#eauto_soc = self.eauto.get_stuendlicher_soc()[stunde]
|
||||
|
||||
|
||||
# Logik für die E-Auto-Ladung bzw. Entladung
|
||||
@ -68,16 +76,14 @@ class EnergieManagementSystem:
|
||||
geladene_menge_eauto, verluste_eauto = self.eauto.energie_laden(None,stunde)
|
||||
verbrauch = verbrauch + geladene_menge_eauto
|
||||
verluste_wh_pro_stunde[-1] += verluste_eauto
|
||||
#print("verluste_eauto:",verluste_eauto)
|
||||
#eauto_soc_pro_stunde.append(eauto_soc)
|
||||
# Fügen Sie hier zusätzliche Logik für E-Auto ein, z.B. Ladung über Nacht
|
||||
eauto_soc = self.eauto.ladezustand_in_prozent()
|
||||
|
||||
|
||||
|
||||
stündlicher_netzbezug_wh = 0
|
||||
stündliche_kosten_euro = 0
|
||||
stündliche_einnahmen_euro = 0
|
||||
eauto_soc = self.eauto.ladezustand_in_prozent()
|
||||
|
||||
|
||||
if erzeugung > verbrauch:
|
||||
überschuss = erzeugung - verbrauch
|
||||
@ -102,8 +108,9 @@ class EnergieManagementSystem:
|
||||
eigenverbrauch_wh_pro_stunde.append(erzeugung+aus_akku)
|
||||
stündliche_kosten_euro = stündlicher_netzbezug_wh * strompreis
|
||||
|
||||
#print(self.akku.ladezustand_in_prozent())
|
||||
eauto_soc_pro_stunde.append(eauto_soc)
|
||||
if self.eauto:
|
||||
eauto_soc_pro_stunde.append(eauto_soc)
|
||||
|
||||
akku_soc_pro_stunde.append(self.akku.ladezustand_in_prozent())
|
||||
kosten_euro_pro_stunde.append(stündliche_kosten_euro)
|
||||
einnahmen_euro_pro_stunde.append(stündliche_einnahmen_euro)
|
||||
@ -132,7 +139,8 @@ class EnergieManagementSystem:
|
||||
'Gesamteinnahmen_Euro': sum(einnahmen_euro_pro_stunde),
|
||||
'Gesamtkosten_Euro': sum(kosten_euro_pro_stunde),
|
||||
"Verluste_Pro_Stunde":verluste_wh_pro_stunde,
|
||||
"Gesamt_Verluste":sum(verluste_wh_pro_stunde)
|
||||
"Gesamt_Verluste":sum(verluste_wh_pro_stunde),
|
||||
"Haushaltsgeraet_wh_pro_stunde":haushaltsgeraet_wh_pro_stunde
|
||||
}
|
||||
|
||||
return out
|
||||
|
57
modules/class_haushaltsgeraet.py
Normal file
57
modules/class_haushaltsgeraet.py
Normal file
@ -0,0 +1,57 @@
|
||||
import numpy as np
|
||||
|
||||
class Haushaltsgeraet:
|
||||
def __init__(self, hours=None, verbrauch_kwh=None, dauer_h=None):
|
||||
self.hours = hours # Gesamtzeitraum, für den die Planung erfolgt
|
||||
self.verbrauch_kwh = verbrauch_kwh # Gesamtenergieverbrauch des Geräts in kWh
|
||||
self.dauer_h = dauer_h # Dauer der Nutzung in Stunden
|
||||
self.lastkurve = np.zeros(self.hours) # Initialisiere die Lastkurve mit Nullen
|
||||
|
||||
def set_startzeitpunkt(self, start_hour,global_start_hour=0):
|
||||
"""
|
||||
Setzt den Startzeitpunkt des Geräts und generiert eine entsprechende Lastkurve.
|
||||
:param start_hour: Die Stunde, zu der das Gerät starten soll.
|
||||
"""
|
||||
self.reset()
|
||||
# Überprüfe, ob die Dauer der Nutzung innerhalb des verfügbaren Zeitraums liegt
|
||||
if start_hour + self.dauer_h > self.hours:
|
||||
raise ValueError("Die Nutzungsdauer überschreitet den verfügbaren Zeitraum.")
|
||||
if start_hour < global_start_hour:
|
||||
raise ValueError("Die Nutzungsdauer unterschreitet den verfügbaren Zeitraum.")
|
||||
|
||||
# Berechne die Leistung pro Stunde basierend auf dem Gesamtverbrauch und der Dauer
|
||||
leistung_pro_stunde = (self.verbrauch_kwh / self.dauer_h) # Umwandlung in Wattstunde
|
||||
#print(start_hour," ",leistung_pro_stunde)
|
||||
# Setze die Leistung für die Dauer der Nutzung im Lastkurven-Array
|
||||
self.lastkurve[start_hour:start_hour + self.dauer_h] = leistung_pro_stunde
|
||||
|
||||
def reset(self):
|
||||
"""
|
||||
Setzt die Lastkurve zurück.
|
||||
"""
|
||||
self.lastkurve = np.zeros(self.hours)
|
||||
|
||||
def get_lastkurve(self):
|
||||
"""
|
||||
Gibt die aktuelle Lastkurve zurück.
|
||||
"""
|
||||
return self.lastkurve
|
||||
|
||||
def get_last_fuer_stunde(self, hour):
|
||||
"""
|
||||
Gibt die Last für eine spezifische Stunde zurück.
|
||||
:param hour: Die Stunde, für die die Last abgefragt wird.
|
||||
:return: Die Last in Watt für die angegebene Stunde.
|
||||
"""
|
||||
if hour < 0 or hour >= self.hours:
|
||||
raise ValueError("Angegebene Stunde liegt außerhalb des verfügbaren Zeitraums.")
|
||||
|
||||
return self.lastkurve[hour]
|
||||
|
||||
def spaetestmoeglicher_startzeitpunkt(self):
|
||||
"""
|
||||
Gibt den spätestmöglichen Startzeitpunkt zurück, an dem das Gerät noch vollständig laufen kann.
|
||||
"""
|
||||
return self.hours - self.dauer_h
|
||||
|
||||
|
@ -1,61 +0,0 @@
|
||||
import numpy as np
|
||||
class OptimizableLoad:
|
||||
def __init__(self, name=None, power=0, duration=0, schedule=None):
|
||||
"""
|
||||
Initialisiert eine neue optimierbare Last.
|
||||
|
||||
:param name: Eindeutiger Name der Last
|
||||
:param power: Leistung der Last in kW
|
||||
:param duration: Dauer, für die die Last aktiv ist, in Stunden
|
||||
:param schedule: Ein 24-Stunden-Array (0/1), das angibt, wann die Last gestartet werden kann
|
||||
"""
|
||||
self.name = name
|
||||
self.power = power
|
||||
self.duration = duration
|
||||
self.optimal_start_time = None
|
||||
if schedule is None:
|
||||
self.schedule = [1] * 24
|
||||
else:
|
||||
self.schedule = schedule
|
||||
|
||||
def set_schedule(self, new_schedule):
|
||||
"""
|
||||
Aktualisiert den Zeitplan, wann die Last gestartet werden kann.
|
||||
|
||||
:param new_schedule: Ein 24-Stunden-Array (0/1)
|
||||
"""
|
||||
self.schedule = new_schedule
|
||||
|
||||
def set_optimal_start_time(self, start_time):
|
||||
"""
|
||||
Setzt die optimale Startzeit für die Last.
|
||||
|
||||
:param start_time: Die Stunde des Tages (0-23), zu der die Last starten soll
|
||||
"""
|
||||
if 0 <= start_time < 24 and self.is_activatable(start_time):
|
||||
self.optimal_start_time = start_time
|
||||
|
||||
def is_active_at_hour(self, hour):
|
||||
"""
|
||||
Überprüft, ob die Last zu einer bestimmten Stunde aktiv ist, basierend auf ihrem Startzeitpunkt und der Dauer.
|
||||
|
||||
:param hour: Stunde des Tages (0-23)
|
||||
:return: True, wenn die Last aktiv ist, sonst False
|
||||
"""
|
||||
if self.optimal_start_time is None:
|
||||
return False
|
||||
return self.optimal_start_time <= hour < self.optimal_start_time + self.duration
|
||||
|
||||
def power_at_hour(self, hour):
|
||||
"""
|
||||
Gibt die Leistung der Last zu einer bestimmten Stunde zurück.
|
||||
|
||||
:param hour: Stunde des Tages (0-23)
|
||||
:return: Leistung der Last in kW, wenn sie aktiv ist, sonst 0
|
||||
"""
|
||||
if self.is_active_at_hour(hour):
|
||||
return self.power
|
||||
return 0
|
||||
|
||||
def __str__(self):
|
||||
return f"OptimizableLoad(Name: {self.name}, Power: {self.power}kW, Duration: {self.duration}h, Schedule: {self.schedule})"
|
@ -9,6 +9,7 @@ from modules.class_heatpump import *
|
||||
from modules.class_load_container import *
|
||||
from modules.class_sommerzeit import *
|
||||
from modules.visualize import *
|
||||
from modules.class_haushaltsgeraet import *
|
||||
import os
|
||||
from flask import Flask, send_from_directory
|
||||
from pprint import pprint
|
||||
@ -32,52 +33,93 @@ def isfloat(num):
|
||||
|
||||
class optimization_problem:
|
||||
def __init__(self, prediction_hours=24, strafe = 10):
|
||||
|
||||
# Werkzeug-Setup
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
self.toolbox = base.Toolbox()
|
||||
self.prediction_hours = prediction_hours#
|
||||
self.strafe = strafe
|
||||
self.opti_param = None
|
||||
|
||||
def setup_deap_environment(self,opti_param):
|
||||
self.opti_param = opti_param
|
||||
if "FitnessMin" in creator.__dict__:
|
||||
del creator.FitnessMin
|
||||
if "Individual" in creator.__dict__:
|
||||
del creator.Individual
|
||||
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
# PARAMETER
|
||||
self.toolbox = base.Toolbox()
|
||||
|
||||
|
||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
self.toolbox.register("individual", tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours)
|
||||
self.toolbox.register("attr_int", random.randint, 0, 23)
|
||||
|
||||
###################
|
||||
# Haushaltsgeraete
|
||||
if opti_param["haushaltsgeraete"]>0:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(2*self.prediction_hours)] + [self.toolbox.attr_int()]
|
||||
return creator.Individual(attrs)
|
||||
|
||||
else:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(2*self.prediction_hours)]
|
||||
return creator.Individual(attrs)
|
||||
|
||||
|
||||
self.toolbox.register("individual", create_individual)#tools.initCycle, creator.Individual, (self.toolbox.attr_bool,self.toolbox.attr_bool), n=self.prediction_hours+1)
|
||||
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
||||
self.toolbox.register("mate", tools.cxTwoPoint)
|
||||
self.toolbox.register("mutate", tools.mutFlipBit, indpb=0.05)
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
return
|
||||
|
||||
def evaluate_inner(self,individual, ems,start_hour):
|
||||
ems.reset()
|
||||
|
||||
|
||||
# Haushaltsgeraete
|
||||
if self.opti_param["haushaltsgeraete"]>0:
|
||||
spuelstart_int = individual[-1]
|
||||
individual = individual[:-1]
|
||||
ems.set_haushaltsgeraet_start(spuelstart_int,global_start_hour=start_hour)
|
||||
|
||||
discharge_hours_bin = individual[0::2]
|
||||
eautocharge_hours_float = individual[1::2]
|
||||
|
||||
|
||||
ems.reset()
|
||||
ems.set_akku_discharge_hours(discharge_hours_bin)
|
||||
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
||||
|
||||
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
return o
|
||||
|
||||
# Fitness-Funktion (muss Ihre EnergieManagementSystem-Logik integrieren)
|
||||
def evaluate(self,individual,ems,parameter,start_hour):
|
||||
o = self.evaluate_inner(individual,ems,start_hour)
|
||||
|
||||
def evaluate(self,individual,ems,parameter,start_hour,worst_case):
|
||||
try:
|
||||
o = self.evaluate_inner(individual,ems,start_hour)
|
||||
except:
|
||||
return (100000.0,)
|
||||
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"]
|
||||
if worst_case:
|
||||
gesamtbilanz = gesamtbilanz * -1.0
|
||||
|
||||
# Überprüfung, ob der Mindest-SoC erreicht wird
|
||||
final_soc = ems.eauto.ladezustand_in_prozent() # Nimmt den SoC am Ende des Optimierungszeitraums
|
||||
|
||||
|
||||
strafe = 0.0
|
||||
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe )
|
||||
|
||||
gesamtbilanz += strafe
|
||||
gesamtbilanz += o["Gesamt_Verluste"]/1000.0
|
||||
if worst_case:
|
||||
strafe = abs(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe
|
||||
gesamtbilanz += strafe
|
||||
|
||||
gesamtbilanz -= o["Gesamt_Verluste"]/1000.0
|
||||
else:
|
||||
strafe = max(0,(parameter['eauto_min_soc']-ems.eauto.ladezustand_in_prozent()) * self.strafe )
|
||||
gesamtbilanz += strafe
|
||||
gesamtbilanz += o["Gesamt_Verluste"]/1000.0
|
||||
return (gesamtbilanz,)
|
||||
|
||||
|
||||
@ -104,7 +146,7 @@ class optimization_problem:
|
||||
return hof[0]
|
||||
|
||||
|
||||
def optimierung_ems(self,parameter=None, start_hour=None):
|
||||
def optimierung_ems(self,parameter=None, start_hour=None,worst_case=False):
|
||||
|
||||
############
|
||||
# Parameter
|
||||
@ -130,10 +172,18 @@ class optimization_problem:
|
||||
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
||||
eauto.set_charge_per_hour(laden_moeglich)
|
||||
min_soc_eauto = parameter['eauto_min_soc']
|
||||
|
||||
start_params = parameter['start_solution']
|
||||
|
||||
gesamtlast = Gesamtlast()
|
||||
|
||||
###############
|
||||
# spuelmaschine
|
||||
##############
|
||||
if parameter["haushaltsgeraet_dauer"] >0:
|
||||
spuelmaschine = Haushaltsgeraet(hours=self.prediction_hours, verbrauch_kwh=parameter["haushaltsgeraet_wh"], dauer_h=parameter["haushaltsgeraet_dauer"])
|
||||
spuelmaschine.set_startzeitpunkt(start_hour) # Startet jetzt
|
||||
else:
|
||||
spuelmaschine = None
|
||||
|
||||
|
||||
###############
|
||||
# Load Forecast
|
||||
@ -173,29 +223,49 @@ class optimization_problem:
|
||||
leistung_wp = wp.simulate_24h(temperature_forecast)
|
||||
gesamtlast.hinzufuegen("Heatpump", leistung_wp)
|
||||
|
||||
ems = EnergieManagementSystem(akku=akku, gesamtlast = gesamtlast, pv_prognose_wh=pv_forecast, strompreis_euro_pro_wh=specific_date_prices, einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh, eauto=eauto)
|
||||
ems = EnergieManagementSystem(akku=akku, gesamtlast = gesamtlast, pv_prognose_wh=pv_forecast, strompreis_euro_pro_wh=specific_date_prices, einspeiseverguetung_euro_pro_wh=einspeiseverguetung_euro_pro_wh, eauto=eauto, haushaltsgeraet=spuelmaschine)
|
||||
o = ems.simuliere(start_hour)
|
||||
|
||||
###############
|
||||
# Optimizer Init
|
||||
##############
|
||||
opti_param = {}
|
||||
opti_param["haushaltsgeraete"] = 0
|
||||
if spuelmaschine != None:
|
||||
opti_param["haushaltsgeraete"] = 1
|
||||
|
||||
self.setup_deap_environment(opti_param)
|
||||
|
||||
def evaluate_wrapper(individual):
|
||||
return self.evaluate(individual, ems, parameter,start_hour)
|
||||
return self.evaluate(individual, ems, parameter,start_hour,worst_case)
|
||||
|
||||
self.toolbox.register("evaluate", evaluate_wrapper)
|
||||
start_solution = self.optimize(start_params)
|
||||
best_solution = start_solution
|
||||
o = self.evaluate_inner(best_solution, ems,start_hour)
|
||||
eauto = ems.eauto.to_dict()
|
||||
spuelstart_int = None
|
||||
# Haushaltsgeraete
|
||||
if self.opti_param["haushaltsgeraete"]>0:
|
||||
spuelstart_int = best_solution[-1]
|
||||
best_solution = best_solution[:-1]
|
||||
discharge_hours_bin = best_solution[0::2]
|
||||
eautocharge_hours_float = best_solution[1::2]
|
||||
|
||||
#print(o)
|
||||
|
||||
|
||||
|
||||
visualisiere_ergebnisse(gesamtlast, pv_forecast, specific_date_prices, o,best_solution[0::2],best_solution[1::2] , temperature_forecast, start_hour, self.prediction_hours,einspeiseverguetung_euro_pro_wh)
|
||||
print(o)
|
||||
if worst_case:
|
||||
visualisiere_ergebnisse(gesamtlast, pv_forecast, specific_date_prices, o,best_solution[0::2],best_solution[1::2] , temperature_forecast, start_hour, self.prediction_hours,einspeiseverguetung_euro_pro_wh,filename="visualisierungsergebnisse_worst.pdf")
|
||||
os.system("scp visualisierungsergebnisse_worst.pdf andreas@192.168.1.135:")
|
||||
else:
|
||||
visualisiere_ergebnisse(gesamtlast, pv_forecast, specific_date_prices, o,best_solution[0::2],best_solution[1::2] , temperature_forecast, start_hour, self.prediction_hours,einspeiseverguetung_euro_pro_wh)
|
||||
|
||||
os.system("scp visualisierungsergebnisse.pdf andreas@192.168.1.135:")
|
||||
os.system("scp visualisierungsergebnisse.pdf andreas@192.168.1.135:")
|
||||
|
||||
#print(eauto)
|
||||
return {"discharge_hours_bin":discharge_hours_bin, "eautocharge_hours_float":eautocharge_hours_float ,"result":o ,"eauto_obj":eauto,"start_solution":best_solution}
|
||||
return {"discharge_hours_bin":discharge_hours_bin, "eautocharge_hours_float":eautocharge_hours_float ,"result":o ,"eauto_obj":eauto,"start_solution":best_solution,"spuelstart":spuelstart_int}
|
||||
|
||||
|
||||
|
||||
|
@ -9,12 +9,12 @@ from matplotlib.backends.backend_pdf import PdfPages
|
||||
from datetime import datetime
|
||||
|
||||
|
||||
def visualisiere_ergebnisse(gesamtlast, pv_forecast, strompreise, ergebnisse, discharge_hours, laden_moeglich, temperature, start_hour, prediction_hours,einspeiseverguetung_euro_pro_wh):
|
||||
def visualisiere_ergebnisse(gesamtlast, pv_forecast, strompreise, ergebnisse, discharge_hours, laden_moeglich, temperature, start_hour, prediction_hours,einspeiseverguetung_euro_pro_wh, filename="visualisierungsergebnisse.pdf"):
|
||||
|
||||
#####################
|
||||
# 24h
|
||||
#####################
|
||||
with PdfPages('visualisierungsergebnisse.pdf') as pdf:
|
||||
with PdfPages(filename) as pdf:
|
||||
|
||||
|
||||
# Last und PV-Erzeugung
|
||||
@ -98,6 +98,7 @@ def visualisiere_ergebnisse(gesamtlast, pv_forecast, strompreise, ergebnisse, d
|
||||
# Eigenverbrauch, Netzeinspeisung und Netzbezug
|
||||
plt.subplot(3, 2, 1)
|
||||
plt.plot(stunden, ergebnisse['Eigenverbrauch_Wh_pro_Stunde'], label='Eigenverbrauch (Wh)', marker='o')
|
||||
plt.plot(stunden, ergebnisse['Haushaltsgeraet_wh_pro_stunde'], label='Haushaltsgerät (Wh)', marker='o')
|
||||
plt.plot(stunden, ergebnisse['Netzeinspeisung_Wh_pro_Stunde'], label='Netzeinspeisung (Wh)', marker='x')
|
||||
plt.plot(stunden, ergebnisse['Netzbezug_Wh_pro_Stunde'], label='Netzbezug (Wh)', marker='^')
|
||||
plt.plot(stunden, ergebnisse['Verluste_Pro_Stunde'], label='Verluste (Wh)', marker='^')
|
||||
|
Loading…
x
Reference in New Issue
Block a user