mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-11 11:56:17 +00:00
Fix2 config and predictions revamp. (#281)
measurement: - Add new measurement class to hold real world measurements. - Handles load meter readings, grid import and export meter readings. - Aggregates load meter readings aka. measurements to total load. - Can import measurements from files, pandas datetime series, pandas datetime dataframes, simple daetime arrays and programmatically. - Maybe expanded to other measurement values. - Should be used for load prediction adaptions by real world measurements. core/coreabc: - Add mixin class to access measurements core/pydantic: - Add pydantic models for pandas datetime series and dataframes. - Add pydantic models for simple datetime array core/dataabc: - Provide DataImport mixin class for generic import handling. Imports from JSON string and files. Imports from pandas datetime dataframes and simple datetime arrays. Signature of import method changed to allow import datetimes to be given programmatically and by data content. - Use pydantic models for datetime series, dataframes, arrays - Validate generic imports by pydantic models - Provide new attributes min_datetime and max_datetime for DataSequence. - Add parameter dropna to drop NAN/ None values when creating lists, pandas series or numpy array from DataSequence. config/config: - Add common settings for the measurement module. predictions/elecpriceakkudoktor: - Use mean values of last 7 days to fill prediction values not provided by akkudoktor.net (only provides 24 values). prediction/loadabc: - Extend the generic prediction keys by 'load_total_adjusted' for load predictions that adjust the predicted total load by measured load values. prediction/loadakkudoktor: - Extend the Akkudoktor load prediction by load adjustment using measured load values. prediction/load_aggregator: - Module removed. Load aggregation is now handled by the measurement module. prediction/load_corrector: - Module removed. Load correction (aka. adjustment of load prediction by measured load energy) is handled by the LoadAkkudoktor prediction and the generic 'load_mean_adjusted' prediction key. prediction/load_forecast: - Module removed. Functionality now completely handled by the LoadAkkudoktor prediction. utils/cacheutil: - Use pydantic. - Fix potential bug in ttl (time to live) duration handling. utils/datetimeutil: - Added missing handling of pendulum.DateTime and pendulum.Duration instances as input. Handled before as datetime.datetime and datetime.timedelta. utils/visualize: - Move main to generate_example_report() for better testing support. server/server: - Added new configuration option server_fastapi_startup_server_fasthtml to make startup of FastHTML server by FastAPI server conditional. server/fastapi_server: - Add APIs for measurements - Improve APIs to provide or take pandas datetime series and datetime dataframes controlled by pydantic model. - Improve APIs to provide or take simple datetime data arrays controlled by pydantic model. - Move fastAPI server API to v1 for new APIs. - Update pre v1 endpoints to use new prediction and measurement capabilities. - Only start FastHTML server if 'server_fastapi_startup_server_fasthtml' config option is set. tests: - Adapt import tests to changed import method signature - Adapt server test to use the v1 API - Extend the dataabc test to test for array generation from data with several data interval scenarios. - Extend the datetimeutil test to also test for correct handling of to_datetime() providing now(). - Adapt LoadAkkudoktor test for new adjustment calculation. - Adapt visualization test to use example report function instead of visualize.py run as process. - Removed test_load_aggregator. Functionality is now tested in test_measurement. - Added tests for measurement module docs: - Remove sphinxcontrib-openapi as it prevents build of documentation. "site-packages/sphinxcontrib/openapi/openapi31.py", line 305, in _get_type_from_schema for t in schema["anyOf"]: KeyError: 'anyOf'" Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
@@ -1,68 +1,43 @@
|
||||
"""Module for managing and serializing Pydantic-based models with custom support.
|
||||
|
||||
This module introduces the `PydanticBaseModel` class, which extends Pydantic’s `BaseModel` to facilitate
|
||||
custom serialization and deserialization for `pendulum.DateTime` objects. The main features include
|
||||
automatic handling of `pendulum.DateTime` fields, custom serialization to ISO 8601 format, and utility
|
||||
methods for converting model instances to and from dictionary and JSON formats.
|
||||
This module provides classes that extend Pydantic’s functionality to include robust handling
|
||||
of `pendulum.DateTime` fields, offering seamless serialization and deserialization into ISO 8601 format.
|
||||
These enhancements facilitate the use of Pydantic models in applications requiring timezone-aware
|
||||
datetime fields and consistent data serialization.
|
||||
|
||||
Key Classes:
|
||||
- PendulumDateTime: A custom type adapter that provides serialization and deserialization
|
||||
functionality for `pendulum.DateTime` objects, converting them to ISO 8601 strings and back.
|
||||
- PydanticBaseModel: A base model class for handling prediction records or configuration data
|
||||
with automatic Pendulum DateTime handling and additional methods for JSON and dictionary
|
||||
conversion.
|
||||
|
||||
Classes:
|
||||
PendulumDateTime(TypeAdapter[pendulum.DateTime]): Type adapter for `pendulum.DateTime` fields
|
||||
with ISO 8601 serialization. Includes:
|
||||
- serialize: Converts `pendulum.DateTime` instances to ISO 8601 string.
|
||||
- deserialize: Converts ISO 8601 strings to `pendulum.DateTime` instances.
|
||||
- is_iso8601: Validates if a string matches the ISO 8601 date format.
|
||||
|
||||
PydanticBaseModel(BaseModel): Extends `pydantic.BaseModel` to handle `pendulum.DateTime` fields
|
||||
and adds convenience methods for dictionary and JSON serialization. Key methods:
|
||||
- model_dump: Dumps the model, converting `pendulum.DateTime` fields to ISO 8601.
|
||||
- model_construct: Constructs a model instance with automatic deserialization of
|
||||
`pendulum.DateTime` fields from ISO 8601.
|
||||
- to_dict: Serializes the model instance to a dictionary.
|
||||
- from_dict: Constructs a model instance from a dictionary.
|
||||
- to_json: Converts the model instance to a JSON string.
|
||||
- from_json: Creates a model instance from a JSON string.
|
||||
|
||||
Usage Example:
|
||||
# Define custom settings in a model using PydanticBaseModel
|
||||
class PredictionCommonSettings(PydanticBaseModel):
|
||||
prediction_start: pendulum.DateTime = Field(...)
|
||||
|
||||
# Serialize a model instance to a dictionary or JSON
|
||||
config = PredictionCommonSettings(prediction_start=pendulum.now())
|
||||
config_dict = config.to_dict()
|
||||
config_json = config.to_json()
|
||||
|
||||
# Deserialize from dictionary or JSON
|
||||
new_config = PredictionCommonSettings.from_dict(config_dict)
|
||||
restored_config = PredictionCommonSettings.from_json(config_json)
|
||||
|
||||
Dependencies:
|
||||
- `pendulum`: Required for handling timezone-aware datetime fields.
|
||||
- `pydantic`: Required for model and validation functionality.
|
||||
|
||||
Notes:
|
||||
- This module enables custom handling of Pendulum DateTime fields within Pydantic models,
|
||||
which is particularly useful for applications requiring consistent ISO 8601 datetime formatting
|
||||
and robust timezone-aware datetime support.
|
||||
Key Features:
|
||||
- Custom type adapter for `pendulum.DateTime` fields with automatic serialization to ISO 8601 strings.
|
||||
- Utility methods for converting models to and from dictionaries and JSON strings.
|
||||
- Validation tools for maintaining data consistency, including specialized support for
|
||||
pandas DataFrames and Series with datetime indexes.
|
||||
"""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Type
|
||||
from typing import Any, Dict, List, Optional, Type, Union
|
||||
from zoneinfo import ZoneInfo
|
||||
|
||||
import pandas as pd
|
||||
import pendulum
|
||||
from pydantic import BaseModel, ConfigDict, TypeAdapter
|
||||
from pandas.api.types import is_datetime64_any_dtype
|
||||
from pydantic import (
|
||||
AwareDatetime,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
RootModel,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
ValidationInfo,
|
||||
field_validator,
|
||||
)
|
||||
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
|
||||
|
||||
# Custom type adapter for Pendulum DateTime fields
|
||||
class PendulumDateTime(TypeAdapter[pendulum.DateTime]):
|
||||
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
|
||||
"""Custom type adapter for Pendulum DateTime fields."""
|
||||
|
||||
@classmethod
|
||||
def serialize(cls, value: Any) -> str:
|
||||
"""Convert pendulum.DateTime to ISO 8601 string."""
|
||||
@@ -105,41 +80,69 @@ class PydanticBaseModel(BaseModel):
|
||||
validate_assignment=True,
|
||||
)
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
def validate_and_convert_pendulum(cls, value: Any, info: ValidationInfo) -> Any:
|
||||
"""Validator to convert fields of type `pendulum.DateTime`.
|
||||
|
||||
Converts fields to proper `pendulum.DateTime` objects, ensuring correct input types.
|
||||
|
||||
This method is invoked for every field before the field value is set. If the field's type
|
||||
is `pendulum.DateTime`, it tries to convert string or timestamp values to `pendulum.DateTime`
|
||||
objects. If the value cannot be converted, a validation error is raised.
|
||||
|
||||
Args:
|
||||
value: The value to be assigned to the field.
|
||||
info: Validation information for the field.
|
||||
|
||||
Returns:
|
||||
The converted value, if successful.
|
||||
|
||||
Raises:
|
||||
ValidationError: If the value cannot be converted to `pendulum.DateTime`.
|
||||
"""
|
||||
# Get the field name and expected type
|
||||
field_name = info.field_name
|
||||
expected_type = cls.model_fields[field_name].annotation
|
||||
|
||||
# Convert
|
||||
if expected_type is pendulum.DateTime or expected_type is AwareDatetime:
|
||||
try:
|
||||
value = to_datetime(value)
|
||||
except:
|
||||
pass
|
||||
return value
|
||||
|
||||
# Override Pydantic’s serialization for all DateTime fields
|
||||
def model_dump(self, *args: Any, **kwargs: Any) -> dict:
|
||||
"""Custom dump method to handle serialization for DateTime fields."""
|
||||
result = super().model_dump(*args, **kwargs)
|
||||
for key, value in result.items():
|
||||
if isinstance(value, pendulum.DateTime):
|
||||
result[key] = PendulumDateTime.serialize(value)
|
||||
result[key] = PydanticTypeAdapterDateTime.serialize(value)
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def model_construct(cls, data: dict) -> "PydanticBaseModel":
|
||||
def model_construct(
|
||||
cls, _fields_set: set[str] | None = None, **values: Any
|
||||
) -> "PydanticBaseModel":
|
||||
"""Custom constructor to handle deserialization for DateTime fields."""
|
||||
for key, value in data.items():
|
||||
if isinstance(value, str) and PendulumDateTime.is_iso8601(value):
|
||||
data[key] = PendulumDateTime.deserialize(value)
|
||||
return super().model_construct(data)
|
||||
for key, value in values.items():
|
||||
if isinstance(value, str) and PydanticTypeAdapterDateTime.is_iso8601(value):
|
||||
values[key] = PydanticTypeAdapterDateTime.deserialize(value)
|
||||
return super().model_construct(_fields_set, **values)
|
||||
|
||||
def reset_optional(self) -> "PydanticBaseModel":
|
||||
"""Resets all optional fields in the model to None.
|
||||
|
||||
Iterates through all model fields and sets any optional (non-required)
|
||||
fields to None. The modification is done in-place on the current instance.
|
||||
|
||||
Returns:
|
||||
PydanticBaseModel: The current instance with all optional fields
|
||||
reset to None.
|
||||
|
||||
Example:
|
||||
>>> settings = PydanticBaseModel(name="test", optional_field="value")
|
||||
>>> settings.reset_optional()
|
||||
>>> assert settings.optional_field is None
|
||||
"""
|
||||
for field_name, field in self.model_fields.items():
|
||||
if field.is_required is False: # Check if field is optional
|
||||
setattr(self, field_name, None)
|
||||
def reset_to_defaults(self) -> "PydanticBaseModel":
|
||||
"""Resets the fields to their default values."""
|
||||
for field_name, field_info in self.model_fields.items():
|
||||
if field_info.default_factory is not None: # Handle fields with default_factory
|
||||
default_value = field_info.default_factory()
|
||||
else:
|
||||
default_value = field_info.default
|
||||
try:
|
||||
setattr(self, field_name, default_value)
|
||||
except (AttributeError, TypeError, ValidationError):
|
||||
# Skip fields that are read-only or dynamically computed or can not be set to default
|
||||
pass
|
||||
return self
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
@@ -167,40 +170,6 @@ class PydanticBaseModel(BaseModel):
|
||||
"""
|
||||
return cls.model_validate(data)
|
||||
|
||||
@classmethod
|
||||
def from_dict_with_reset(cls, data: dict | None = None) -> "PydanticBaseModel":
|
||||
"""Creates a new instance with reset optional fields, then updates from dict.
|
||||
|
||||
First creates an instance with default values, resets all optional fields
|
||||
to None, then updates the instance with the provided dictionary data if any.
|
||||
|
||||
Args:
|
||||
data (dict | None): Dictionary containing field values to initialize
|
||||
the instance with. Defaults to None.
|
||||
|
||||
Returns:
|
||||
PydanticBaseModel: A new instance with all optional fields initially
|
||||
reset to None and then updated with provided data.
|
||||
|
||||
Example:
|
||||
>>> data = {"name": "test", "optional_field": "value"}
|
||||
>>> settings = PydanticBaseModel.from_dict_with_reset(data)
|
||||
>>> # All non-specified optional fields will be None
|
||||
"""
|
||||
# Create instance with model defaults
|
||||
instance = cls()
|
||||
|
||||
# Reset all optional fields to None
|
||||
instance.reset_optional()
|
||||
|
||||
# Update with provided data if any
|
||||
if data:
|
||||
# Use model_validate to ensure proper type conversion and validation
|
||||
updated_instance = instance.model_validate({**instance.model_dump(), **data})
|
||||
return updated_instance
|
||||
|
||||
return instance
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Convert the PydanticBaseModel instance to a JSON string.
|
||||
|
||||
@@ -224,3 +193,287 @@ class PydanticBaseModel(BaseModel):
|
||||
"""
|
||||
data = json.loads(json_str)
|
||||
return cls.model_validate(data)
|
||||
|
||||
|
||||
class PydanticDateTimeData(RootModel):
|
||||
"""Pydantic model for time series data with consistent value lengths.
|
||||
|
||||
This model validates a dictionary where:
|
||||
- Keys are strings representing data series names
|
||||
- Values are lists of numeric or string values
|
||||
- Special keys 'start_datetime' and 'interval' can contain string values
|
||||
for time series indexing
|
||||
- All value lists must have the same length
|
||||
|
||||
Example:
|
||||
{
|
||||
"start_datetime": "2024-01-01 00:00:00", # optional
|
||||
"interval": "1 Hour", # optional
|
||||
"load_mean": [20.5, 21.0, 22.1],
|
||||
"load_min": [18.5, 19.0, 20.1]
|
||||
}
|
||||
"""
|
||||
|
||||
root: Dict[str, Union[str, List[Union[float, int, str, None]]]]
|
||||
|
||||
@field_validator("root", mode="after")
|
||||
@classmethod
|
||||
def validate_root(
|
||||
cls, value: Dict[str, Union[str, List[Union[float, int, str, None]]]]
|
||||
) -> Dict[str, Union[str, List[Union[float, int, str, None]]]]:
|
||||
# Validate that all keys are strings
|
||||
if not all(isinstance(k, str) for k in value.keys()):
|
||||
raise ValueError("All keys in the dictionary must be strings.")
|
||||
|
||||
# Validate that no lists contain only None values
|
||||
for v in value.values():
|
||||
if isinstance(v, list) and all(item is None for item in v):
|
||||
raise ValueError("Lists cannot contain only None values.")
|
||||
|
||||
# Validate that all lists have consistent lengths (if they are lists)
|
||||
list_lengths = [len(v) for v in value.values() if isinstance(v, list)]
|
||||
if len(set(list_lengths)) > 1:
|
||||
raise ValueError("All lists in the dictionary must have the same length.")
|
||||
|
||||
# Validate special keys
|
||||
if "start_datetime" in value.keys():
|
||||
value["start_datetime"] = to_datetime(value["start_datetime"])
|
||||
if "interval" in value.keys():
|
||||
value["interval"] = to_duration(value["interval"])
|
||||
|
||||
return value
|
||||
|
||||
def to_dict(self) -> Dict[str, Union[str, List[Union[float, int, str, None]]]]:
|
||||
"""Convert the model to a plain dictionary.
|
||||
|
||||
Returns:
|
||||
Dict containing the validated data.
|
||||
"""
|
||||
return self.root
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls, data: Dict[str, Any]) -> "PydanticDateTimeData":
|
||||
"""Create a PydanticDateTimeData instance from a dictionary.
|
||||
|
||||
Args:
|
||||
data: Input dictionary
|
||||
|
||||
Returns:
|
||||
PydanticDateTimeData instance
|
||||
"""
|
||||
return cls(root=data)
|
||||
|
||||
|
||||
class PydanticDateTimeDataFrame(PydanticBaseModel):
|
||||
"""Pydantic model for validating pandas DataFrame data with datetime index."""
|
||||
|
||||
data: Dict[str, Dict[str, Any]]
|
||||
dtypes: Dict[str, str] = Field(default_factory=dict)
|
||||
tz: Optional[str] = Field(default=None, description="Timezone for datetime values")
|
||||
datetime_columns: list[str] = Field(
|
||||
default_factory=lambda: ["date_time"], description="Columns to be treated as datetime"
|
||||
)
|
||||
|
||||
@field_validator("tz")
|
||||
def validate_timezone(cls, v: Optional[str]) -> Optional[str]:
|
||||
"""Validate that the timezone is valid."""
|
||||
if v is not None:
|
||||
try:
|
||||
ZoneInfo(v)
|
||||
except KeyError:
|
||||
raise ValueError(f"Invalid timezone: {v}")
|
||||
return v
|
||||
|
||||
@field_validator("data", mode="before")
|
||||
@classmethod
|
||||
def validate_data(cls, v: Dict[str, Any], info: ValidationInfo) -> Dict[str, Any]:
|
||||
if not v:
|
||||
return v
|
||||
|
||||
# Validate consistent columns
|
||||
columns = set(next(iter(v.values())).keys())
|
||||
if not all(set(row.keys()) == columns for row in v.values()):
|
||||
raise ValueError("All rows must have the same columns")
|
||||
|
||||
# Convert index datetime strings
|
||||
try:
|
||||
d = {
|
||||
to_datetime(dt, as_string=True, in_timezone=info.data.get("tz")): value
|
||||
for dt, value in v.items()
|
||||
}
|
||||
v = d
|
||||
except (ValueError, TypeError) as e:
|
||||
raise ValueError(f"Invalid datetime string in index: {e}")
|
||||
|
||||
# Convert datetime columns
|
||||
datetime_cols = info.data.get("datetime_columns", [])
|
||||
try:
|
||||
for dt_str, value in v.items():
|
||||
for column_name, column_value in value.items():
|
||||
if column_name in datetime_cols and column_value is not None:
|
||||
v[dt_str][column_name] = to_datetime(
|
||||
column_value, in_timezone=info.data.get("tz")
|
||||
)
|
||||
except (ValueError, TypeError) as e:
|
||||
raise ValueError(f"Invalid datetime value in column: {e}")
|
||||
|
||||
return v
|
||||
|
||||
@field_validator("dtypes")
|
||||
@classmethod
|
||||
def validate_dtypes(cls, v: Dict[str, str], info: ValidationInfo) -> Dict[str, str]:
|
||||
if not v:
|
||||
return v
|
||||
|
||||
valid_dtypes = {"int64", "float64", "bool", "datetime64[ns]", "object", "string"}
|
||||
invalid_dtypes = set(v.values()) - valid_dtypes
|
||||
if invalid_dtypes:
|
||||
raise ValueError(f"Unsupported dtypes: {invalid_dtypes}")
|
||||
|
||||
data = info.data.get("data", {})
|
||||
if data:
|
||||
columns = set(next(iter(data.values())).keys())
|
||||
if not all(col in columns for col in v.keys()):
|
||||
raise ValueError("dtype columns must exist in data columns")
|
||||
return v
|
||||
|
||||
def to_dataframe(self) -> pd.DataFrame:
|
||||
"""Convert the validated model data to a pandas DataFrame."""
|
||||
df = pd.DataFrame.from_dict(self.data, orient="index")
|
||||
|
||||
# Convert index to datetime
|
||||
index = pd.Index([to_datetime(dt, in_timezone=self.tz) for dt in df.index])
|
||||
df.index = index
|
||||
|
||||
dtype_mapping = {
|
||||
"int": int,
|
||||
"float": float,
|
||||
"str": str,
|
||||
"bool": bool,
|
||||
}
|
||||
|
||||
# Apply dtypes
|
||||
for col, dtype in self.dtypes.items():
|
||||
if dtype == "datetime64[ns]":
|
||||
df[col] = pd.to_datetime(to_datetime(df[col], in_timezone=self.tz))
|
||||
elif dtype in dtype_mapping.keys():
|
||||
df[col] = df[col].astype(dtype_mapping[dtype])
|
||||
else:
|
||||
pass
|
||||
|
||||
return df
|
||||
|
||||
@classmethod
|
||||
def from_dataframe(
|
||||
cls, df: pd.DataFrame, tz: Optional[str] = None
|
||||
) -> "PydanticDateTimeDataFrame":
|
||||
"""Create a PydanticDateTimeDataFrame instance from a pandas DataFrame."""
|
||||
index = pd.Index([to_datetime(dt, as_string=True, in_timezone=tz) for dt in df.index])
|
||||
df.index = index
|
||||
|
||||
datetime_columns = [col for col in df.columns if is_datetime64_any_dtype(df[col])]
|
||||
|
||||
return cls(
|
||||
data=df.to_dict(orient="index"),
|
||||
dtypes={col: str(dtype) for col, dtype in df.dtypes.items()},
|
||||
tz=tz,
|
||||
datetime_columns=datetime_columns,
|
||||
)
|
||||
|
||||
|
||||
class PydanticDateTimeSeries(PydanticBaseModel):
|
||||
"""Pydantic model for validating pandas Series with datetime index in JSON format.
|
||||
|
||||
This model handles Series data serialized with orient='index', where the keys are
|
||||
datetime strings and values are the series values. Provides validation and
|
||||
conversion between JSON and pandas Series with datetime index.
|
||||
|
||||
Attributes:
|
||||
data (Dict[str, Any]): Dictionary mapping datetime strings to values.
|
||||
dtype (str): The data type of the series values.
|
||||
tz (str | None): Timezone name if the datetime index is timezone-aware.
|
||||
"""
|
||||
|
||||
data: Dict[str, Any]
|
||||
dtype: str = Field(default="float64")
|
||||
tz: Optional[str] = Field(default=None)
|
||||
|
||||
@field_validator("data", mode="after")
|
||||
@classmethod
|
||||
def validate_datetime_index(cls, v: Dict[str, Any], info: ValidationInfo) -> Dict[str, Any]:
|
||||
"""Validate that all keys can be parsed as datetime strings.
|
||||
|
||||
Args:
|
||||
v: Dictionary with datetime string keys and series values.
|
||||
|
||||
Returns:
|
||||
The validated data dictionary.
|
||||
|
||||
Raises:
|
||||
ValueError: If any key cannot be parsed as a datetime.
|
||||
"""
|
||||
tz = info.data.get("tz")
|
||||
if tz is not None:
|
||||
try:
|
||||
ZoneInfo(tz)
|
||||
except KeyError:
|
||||
tz = None
|
||||
try:
|
||||
# Attempt to parse each key as datetime
|
||||
d = dict()
|
||||
for dt_str, value in v.items():
|
||||
d[to_datetime(dt_str, as_string=True, in_timezone=tz)] = value
|
||||
return d
|
||||
except (ValueError, TypeError) as e:
|
||||
raise ValueError(f"Invalid datetime string in index: {e}")
|
||||
|
||||
@field_validator("tz")
|
||||
def validate_timezone(cls, v: Optional[str]) -> Optional[str]:
|
||||
"""Validate that the timezone is valid."""
|
||||
if v is not None:
|
||||
try:
|
||||
ZoneInfo(v)
|
||||
except KeyError:
|
||||
raise ValueError(f"Invalid timezone: {v}")
|
||||
return v
|
||||
|
||||
def to_series(self) -> pd.Series:
|
||||
"""Convert the validated model data to a pandas Series.
|
||||
|
||||
Returns:
|
||||
A pandas Series with datetime index constructed from the model data.
|
||||
"""
|
||||
index = [to_datetime(dt, in_timezone=self.tz) for dt in list(self.data.keys())]
|
||||
|
||||
series = pd.Series(data=list(self.data.values()), index=index, dtype=self.dtype)
|
||||
return series
|
||||
|
||||
@classmethod
|
||||
def from_series(cls, series: pd.Series, tz: Optional[str] = None) -> "PydanticDateTimeSeries":
|
||||
"""Create a PydanticDateTimeSeries instance from a pandas Series.
|
||||
|
||||
Args:
|
||||
series: The pandas Series with datetime index to convert.
|
||||
|
||||
Returns:
|
||||
A new instance containing the Series data.
|
||||
|
||||
Raises:
|
||||
ValueError: If series index is not datetime type.
|
||||
|
||||
Example:
|
||||
>>> dates = pd.date_range('2024-01-01', periods=3)
|
||||
>>> s = pd.Series([1.1, 2.2, 3.3], index=dates)
|
||||
>>> model = PydanticDateTimeSeries.from_series(s)
|
||||
"""
|
||||
index = pd.Index([to_datetime(dt, as_string=True, in_timezone=tz) for dt in series.index])
|
||||
series.index = index
|
||||
|
||||
if len(index) > 0:
|
||||
tz = to_datetime(series.index[0]).timezone.name
|
||||
|
||||
return cls(
|
||||
data=series.to_dict(),
|
||||
dtype=str(series.dtype),
|
||||
tz=tz,
|
||||
)
|
||||
|
Reference in New Issue
Block a user