mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 00:45:22 +00:00
Time stop in verbose + LRU Cache / Vectoriz.
This commit is contained in:
parent
9214d190e8
commit
83bfb1878b
@ -1,6 +1,7 @@
|
||||
import random
|
||||
from tabnanny import verbose
|
||||
from typing import Any, Optional, Tuple
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
from deap import algorithms, base, creator, tools
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
@ -354,10 +355,11 @@ class optimization_problem:
|
||||
worst_case: bool,
|
||||
) -> Tuple[float]:
|
||||
"""Evaluate the fitness of an individual solution based on the simulation results."""
|
||||
# try:
|
||||
o = self.evaluate_inner(individual, ems, start_hour)
|
||||
# except Exception as e:
|
||||
# return (100000.0,) # Return a high penalty in case of an exception
|
||||
|
||||
try:
|
||||
o = self.evaluate_inner(individual, ems, start_hour)
|
||||
except Exception as e:
|
||||
return (100000.0,) # Return a high penalty in case of an exception
|
||||
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
|
||||
|
||||
@ -509,8 +511,13 @@ class optimization_problem:
|
||||
"evaluate",
|
||||
lambda ind: self.evaluate(ind, ems, parameters, start_hour, worst_case),
|
||||
)
|
||||
start_solution, extra_data = self.optimize(parameters.start_solution, ngen=ngen)
|
||||
|
||||
if self.verbose == True:
|
||||
start_time = time.time()
|
||||
start_solution, extra_data = self.optimize(parameters.start_solution, ngen=ngen)
|
||||
if self.verbose == True:
|
||||
elapsed_time = time.time() - start_time
|
||||
print(f"Time evaluate inner: {elapsed_time:.4f} sec.")
|
||||
# Perform final evaluation on the best solution
|
||||
o = self.evaluate_inner(start_solution, ems, start_hour)
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
|
||||
|
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python
|
||||
import numpy as np
|
||||
import pickle
|
||||
from functools import lru_cache
|
||||
|
||||
# from scipy.interpolate import RegularGridInterpolator
|
||||
from pathlib import Path
|
||||
@ -10,44 +11,59 @@ class self_consumption_probability_interpolator:
|
||||
def __init__(self, filepath: str | Path):
|
||||
self.filepath = filepath
|
||||
self.interpolator = None
|
||||
print("OPEN")
|
||||
# Load the RegularGridInterpolator
|
||||
with open(self.filepath, "rb") as file:
|
||||
print("OPENED")
|
||||
self.interpolator = pickle.load(file)
|
||||
|
||||
def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
|
||||
"""Calculate the PV self-consumption rate using RegularGridInterpolator.
|
||||
|
||||
Args:
|
||||
- last_1h_power: 1h power levels (W).
|
||||
- pv_power: Current PV power output (W).
|
||||
|
||||
Returns:
|
||||
- Self-consumption rate as a float.
|
||||
"""
|
||||
# Generate the range of partial loads (0 to last_1h_power)
|
||||
partial_loads = np.arange(0, 3500, 50)
|
||||
|
||||
# Get probabilities for all partial loads
|
||||
@lru_cache(maxsize=128)
|
||||
def generate_points(self, load_1h_power: float, pv_power: float):
|
||||
"""Generate the grid points for interpolation."""
|
||||
partial_loads = np.arange(0, pv_power + 50, 50)
|
||||
points = np.array([np.full_like(partial_loads, load_1h_power), partial_loads]).T
|
||||
if self.interpolator == None:
|
||||
return -1.0
|
||||
return points, partial_loads
|
||||
|
||||
def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
|
||||
points, partial_loads = self.generate_points(load_1h_power, pv_power)
|
||||
probabilities = self.interpolator(points)
|
||||
probabilities = probabilities / probabilities.sum()
|
||||
# for i, w in enumerate(partial_loads):
|
||||
# print(w, ": ", probabilities[i])
|
||||
# print(probabilities.sum())
|
||||
# Ensure probabilities are within [0, 1]
|
||||
probabilities = np.clip(probabilities, 0, 1)
|
||||
return probabilities.sum()
|
||||
|
||||
# Mask: Only include probabilities where the load is <= PV power
|
||||
mask = partial_loads <= pv_power
|
||||
# def calculate_self_consumption(self, load_1h_power: float, pv_power: float) -> float:
|
||||
# """Calculate the PV self-consumption rate using RegularGridInterpolator.
|
||||
|
||||
# Calculate the cumulative probability for covered loads
|
||||
self_consumption_rate = np.sum(probabilities[mask]) / np.sum(probabilities)
|
||||
# Args:
|
||||
# - last_1h_power: 1h power levels (W).
|
||||
# - pv_power: Current PV power output (W).
|
||||
|
||||
return self_consumption_rate
|
||||
# Returns:
|
||||
# - Self-consumption rate as a float.
|
||||
# """
|
||||
# # Generate the range of partial loads (0 to last_1h_power)
|
||||
# partial_loads = np.arange(0, pv_power + 50, 50)
|
||||
|
||||
# # Get probabilities for all partial loads
|
||||
# points = np.array([np.full_like(partial_loads, load_1h_power), partial_loads]).T
|
||||
# if self.interpolator == None:
|
||||
# return -1.0
|
||||
# probabilities = self.interpolator(points)
|
||||
# self_consumption_rate = probabilities.sum()
|
||||
|
||||
# # probabilities = probabilities / (np.sum(probabilities)) # / (pv_power / 3450))
|
||||
# # # for i, w in enumerate(partial_loads):
|
||||
# # # print(w, ": ", probabilities[i])
|
||||
# # print(probabilities.sum())
|
||||
|
||||
# # # Ensure probabilities are within [0, 1]
|
||||
# # probabilities = np.clip(probabilities, 0, 1)
|
||||
|
||||
# # # Mask: Only include probabilities where the load is <= PV power
|
||||
# # mask = partial_loads <= pv_power
|
||||
|
||||
# # # Calculate the cumulative probability for covered loads
|
||||
# # self_consumption_rate = np.sum(probabilities[mask]) / np.sum(probabilities)
|
||||
# # print(self_consumption_rate)
|
||||
# # sys.exit()
|
||||
|
||||
# return self_consumption_rate
|
||||
|
||||
|
||||
# Test the function
|
||||
|
Loading…
x
Reference in New Issue
Block a user