Startpunkt setzbar und Prognosezeitraum ebenfalls.

This commit is contained in:
Bla Bla 2024-02-25 16:47:28 +01:00
parent dce2f4aed3
commit 8ae3150e31
7 changed files with 140 additions and 130 deletions

View File

@ -1,18 +1,19 @@
import numpy as np
class PVAkku:
def __init__(self, kapazitaet_wh):
def __init__(self, kapazitaet_wh, hours):
# Kapazität des Akkus in Wh
self.kapazitaet_wh = kapazitaet_wh
# Initialer Ladezustand des Akkus in Wh
self.soc_wh = 0
self.discharge_array = np.full(24, 1)
self.hours = hours
self.discharge_array = np.full(self.hours, 1)
def reset(self):
self.soc_wh = 0
self.discharge_array = np.full(24, 1)
self.discharge_array = np.full(self.hours, 1)
def set_discharge_per_hour(self, discharge_array):
assert(len(discharge_array) == 24)
assert(len(discharge_array) == self.hours)
self.discharge_array = discharge_array
def ladezustand_in_prozent(self):

View File

@ -1,35 +1,6 @@
# class EnergieManagementSystem:
# def __init__(self, akku, lastkurve_wh, pv_prognose_wh):
# self.akku = akku
# self.lastkurve_wh = lastkurve_wh
# self.pv_prognose_wh = pv_prognose_wh
from datetime import datetime
from pprint import pprint
# def simuliere(self):
# eigenverbrauch_wh = 0
# netzeinspeisung_wh = 0
# netzbezug_wh = 0
# for stunde in range(len(self.lastkurve_wh)):
# verbrauch = self.lastkurve_wh[stunde]
# erzeugung = self.pv_prognose_wh[stunde]
# if erzeugung > verbrauch:
# überschuss = erzeugung - verbrauch
# eigenverbrauch_wh += verbrauch
# geladene_energie = min(überschuss, self.akku.kapazitaet_wh - self.akku.soc_wh)
# self.akku.energie_laden(geladene_energie)
# netzeinspeisung_wh += überschuss - geladene_energie
# else:
# eigenverbrauch_wh += erzeugung
# benötigte_energie = verbrauch - erzeugung
# aus_akku = self.akku.energie_abgeben(benötigte_energie)
# netzbezug_wh += benötigte_energie - aus_akku
# return {
# 'Eigenverbrauch_Wh': eigenverbrauch_wh,
# 'Netzeinspeisung_Wh': netzeinspeisung_wh,
# 'Netzbezug_Wh': netzbezug_wh
# }
class EnergieManagementSystem:
@ -39,12 +10,30 @@ class EnergieManagementSystem:
self.pv_prognose_wh = pv_prognose_wh
self.strompreis_cent_pro_wh = strompreis_cent_pro_wh # Strompreis in Cent pro Wh
self.einspeiseverguetung_cent_pro_wh = einspeiseverguetung_cent_pro_wh # Einspeisevergütung in Cent pro Wh
# print("\n\nLastprognose:",self.lastkurve_wh.shape)
# print("PV Prognose:",self.pv_prognose_wh.shape)
# print("Preis Prognose:",self.strompreis_cent_pro_wh.shape)
def set_akku_discharge_hours(self, ds):
self.akku.set_discharge_per_hour(ds)
def reset(self):
self.akku.reset()
def simuliere_ab_jetzt(self):
jetzt = datetime.now()
start_stunde = jetzt.hour
# Berechne die Anzahl der Stunden bis zum gleichen Zeitpunkt am nächsten Tag
stunden_bis_ende_tag = 24 - start_stunde
# Füge diese Stunden zum nächsten Tag hinzu
gesamt_stunden = stunden_bis_ende_tag + 24
# Beginne die Simulation ab der aktuellen Stunde und führe sie für die berechnete Dauer aus
return self.simuliere(start_stunde)
def simuliere(self, start_stunde):
eigenverbrauch_wh_pro_stunde = []
netzeinspeisung_wh_pro_stunde = []
@ -53,19 +42,17 @@ class EnergieManagementSystem:
einnahmen_euro_pro_stunde = []
akku_soc_pro_stunde = []
ende = len(self.lastkurve_wh) # Berechnet das Ende basierend auf der Länge der Lastkurve
ende = min( len(self.lastkurve_wh),len(self.pv_prognose_wh), len(self.strompreis_cent_pro_wh))
#print(ende)
# Berechnet das Ende basierend auf der Länge der Lastkurve
for stunde in range(start_stunde, ende):
# Anpassung, um sicherzustellen, dass Indizes korrekt sind
verbrauch = self.lastkurve_wh[stunde]
erzeugung = self.pv_prognose_wh[stunde]
strompreis = self.strompreis_cent_pro_wh[stunde] if stunde < len(self.strompreis_cent_pro_wh) else self.strompreis_cent_pro_wh[-1]
# for stunde in range(len(self.lastkurve_wh)):
# verbrauch = self.lastkurve_wh[stunde]
# erzeugung = self.pv_prognose_wh[stunde]
# strompreis = self.strompreis_cent_pro_wh[stunde]
#print(verbrauch," ",erzeugung," ",strompreis)
stündlicher_netzbezug_wh = 0
stündliche_kosten_euro = 0
stündliche_einnahmen_euro = 0
@ -92,8 +79,16 @@ class EnergieManagementSystem:
# Berechnung der Gesamtbilanzen
gesamtkosten_euro = sum(kosten_euro_pro_stunde) - sum(einnahmen_euro_pro_stunde)
expected_length = ende - start_stunde
array_names = ['Eigenverbrauch_Wh_pro_Stunde', 'Netzeinspeisung_Wh_pro_Stunde', 'Netzbezug_Wh_pro_Stunde', 'Kosten_Euro_pro_Stunde', 'akku_soc_pro_stunde', 'Einnahmen_Euro_pro_Stunde']
all_arrays = [eigenverbrauch_wh_pro_stunde, netzeinspeisung_wh_pro_stunde, netzbezug_wh_pro_stunde, kosten_euro_pro_stunde, akku_soc_pro_stunde, einnahmen_euro_pro_stunde]
return {
inconsistent_arrays = [name for name, arr in zip(array_names, all_arrays) if len(arr) != expected_length]
if inconsistent_arrays:
raise ValueError(f"Inkonsistente Längen bei den Arrays: {', '.join(inconsistent_arrays)}. Erwartete Länge: {expected_length}, gefunden: {[len(all_arrays[array_names.index(name)]) for name in inconsistent_arrays]}")
out = {
'Eigenverbrauch_Wh_pro_Stunde': eigenverbrauch_wh_pro_stunde,
'Netzeinspeisung_Wh_pro_Stunde': netzeinspeisung_wh_pro_stunde,
'Netzbezug_Wh_pro_Stunde': netzbezug_wh_pro_stunde,
@ -105,42 +100,5 @@ class EnergieManagementSystem:
'Gesamtkosten_Euro': sum(kosten_euro_pro_stunde)
}
# def simuliere(self):
# eigenverbrauch_wh = 0
# netzeinspeisung_wh = 0
# netzbezug_wh = 0
# kosten_euro = 0
# einnahmen_euro = 0
# for stunde in range(len(self.lastkurve_wh)):
# verbrauch = self.lastkurve_wh[stunde]
# erzeugung = self.pv_prognose_wh[stunde]
# strompreis = self.strompreis_cent_pro_wh[stunde]
# if erzeugung > verbrauch:
# überschuss = erzeugung - verbrauch
# eigenverbrauch_wh += verbrauch
# geladene_energie = min(überschuss, self.akku.kapazitaet_wh - self.akku.soc_wh)
# self.akku.energie_laden(geladene_energie)
# netzeinspeisung_wh += überschuss - geladene_energie
# einnahmen_euro += (überschuss - geladene_energie) * self.einspeiseverguetung_cent_pro_wh[stunde] / 100
# else:
# eigenverbrauch_wh += erzeugung
# benötigte_energie = verbrauch - erzeugung
# aus_akku = self.akku.energie_abgeben(benötigte_energie)
# netzbezug_wh += benötigte_energie - aus_akku
# print(strompreis)
# kosten_euro += (benötigte_energie - aus_akku) * strompreis / 100
# gesamtkosten_euro = kosten_euro - einnahmen_euro
# return {
# 'Eigenverbrauch_Wh': eigenverbrauch_wh,
# 'Netzeinspeisung_Wh': netzeinspeisung_wh,
# 'Netzbezug_Wh': netzbezug_wh,
# 'Kosten_Euro': kosten_euro,
# 'Einnahmen_Euro': einnahmen_euro,
# 'Gesamtkosten_Euro': gesamtkosten_euro
# }
return out

View File

@ -12,22 +12,7 @@ class LoadForecast:
self.data_year_energy = None
self.year_energy = year_energy
self.load_data()
# def get_prices_for_date(self, query_date):
# query_date = datetime.strptime(query_date, '%Y-%m-%d').date()
# prices_for_date = [price for price in self.price_data if price.starts_at.date() == query_date]
# return prices_for_date
# def get_price_for_datetime(self, query_datetime):
# query_datetime = datetime.strptime(query_datetime, '%Y-%m-%d %H').replace(minute=0, second=0, microsecond=0)
# query_datetime = query_datetime.replace(tzinfo=timezone(timedelta(hours=1)))
# for price in self.price_data:
# #print(price.starts_at.replace(minute=0, second=0, microsecond=0) , " ", query_datetime, " == ",price.starts_at.replace(minute=0, second=0, microsecond=0) == query_datetime)
# if price.starts_at.replace(minute=0, second=0, microsecond=0) == query_datetime:
# return price
# return None
def get_daily_stats(self, date_str):
"""
Gibt den 24-Stunden-Verlauf mit Erwartungswert und Standardabweichung für ein gegebenes Datum zurück.
@ -66,6 +51,27 @@ class LoadForecast:
return hourly_stats
def get_stats_for_date_range(self, start_date_str, end_date_str):
"""
Gibt die Erwartungswerte und Standardabweichungen für einen Zeitraum zurück.
:param start_date_str: Startdatum als String im Format "YYYY-MM-DD"
:param end_date_str: Enddatum als String im Format "YYYY-MM-DD"
:return: Ein Array mit den aggregierten Daten für den Zeitraum
"""
start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
start_day_of_year = start_date.timetuple().tm_yday
end_day_of_year = end_date.timetuple().tm_yday
# Beachten, dass bei Schaltjahren der Tag des Jahres angepasst werden muss
stats_for_range = self.data_year_energy[start_day_of_year-1:end_day_of_year] # -1 da die Indizierung bei 0 beginnt
# Hier kannst du entscheiden, wie du die Daten über den Zeitraum aggregieren möchtest
# Zum Beispiel könntest du Mittelwerte, Summen oder andere Statistiken über diesen Zeitraum berechnen
return stats_for_range
def load_data(self):

View File

@ -117,6 +117,35 @@ class PVForecast:
return np.array(daily_forecast)
def get_pv_forecast_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
date_range_forecast = []
for data in self.forecast_data:
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
return ac_power_forecast
def get_temperature_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
date_range_forecast = []
for data in self.forecast_data:
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
forecast_data = date_range_forecast
temperature_forecast = [data.get_temperature() for data in forecast_data]
return np.array(temperature_forecast)

View File

@ -43,7 +43,23 @@ class HourlyElectricityPriceForecast:
def get_price_for_date(self, date_str):
"""Gibt alle Preise für das spezifizierte Datum zurück."""
date_prices = [entry["marketpriceEurocentPerKWh"] for entry in self.prices if date_str in entry['start']]
return date_prices
return np.array(date_prices)/(1000.0*100.0)
def get_price_for_daterange(self, start_date_str, end_date_str):
"""Gibt alle Preise zwischen dem Start- und Enddatum zurück."""
start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
price_list = []
while start_date <= end_date:
date_str = start_date.strftime("%Y-%m-%d")
daily_prices = self.get_price_for_date(date_str)
if daily_prices.size > 0:
price_list.extend(daily_prices)
start_date += timedelta(days=1)
return np.array(price_list)

View File

@ -3,7 +3,7 @@ import matplotlib.pyplot as plt
def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse):
stunden = np.arange(1, 25) # 1 bis 24 Stunden
stunden = np.arange(1, len(last)+1) # 1 bis 24 Stunden
# Last und PV-Erzeugung
plt.figure(figsize=(14, 10))
@ -20,8 +20,9 @@ def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, str
plt.grid(True)
# Strompreise
stundenp = np.arange(1, len(strompreise)+1)
plt.subplot(3, 1, 2)
plt.plot(stunden, strompreise, label='Strompreis (€/Wh)', color='purple', marker='s')
plt.plot(stundenp, strompreise, label='Strompreis (€/Wh)', color='purple', marker='s')
plt.title('Strompreise')
plt.xlabel('Stunde des Tages')
plt.ylabel('Preis (€/Wh)')
@ -30,15 +31,15 @@ def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, str
plt.figure(figsize=(18, 12))
stunden = np.arange(1, len(ergebnisse['Eigenverbrauch_Wh_pro_Stunde'])+1)
# Eigenverbrauch, Netzeinspeisung und Netzbezug
plt.subplot(3, 2, 1)
plt.plot(stunden, ergebnisse['Eigenverbrauch_Wh_pro_Stunde'], label='Eigenverbrauch (Wh)', marker='o')
plt.plot(stunden, ergebnisse['Netzeinspeisung_Wh_pro_Stunde'], label='Netzeinspeisung (Wh)', marker='x')
plt.plot(stunden, ergebnisse['akku_soc_pro_stunde'], label='Akku (%)', marker='x')
plt.plot(stunden, ergebnisse['Netzbezug_Wh_pro_Stunde'], label='Netzbezug (Wh)', marker='^')
plt.plot(stunden, pv_forecast, label='PV-Erzeugung (Wh)', marker='x')
plt.plot(stunden, last, label='Last (Wh)', marker='o')
#plt.plot(stunden, pv_forecast, label='PV-Erzeugung (Wh)', marker='x')
#plt.plot(stunden, last, label='Last (Wh)', marker='o')
plt.title('Energiefluss pro Stunde')
plt.xlabel('Stunde')

49
test.py
View File

@ -16,44 +16,42 @@ import random
import os
date = "2024-02-26"
akku_size = 1000 # Wh
year_energy = 2000*1000 #Wh
einspeiseverguetung_cent_pro_wh = np.full(24, 7/1000.0)
prediction_hours = 48
date = (datetime.now().date() + timedelta(days=1)).strftime("%Y-%m-%d")
date_now = datetime.now().strftime("%Y-%m-%d")
max_heizleistung = 5000 # 5 kW Heizleistung
akku_size = 30000 # Wh
year_energy = 2000*1000 #Wh
einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, 7/(1000.0*100.0)) # € / Wh
max_heizleistung = 1000 # 5 kW Heizleistung
wp = Waermepumpe(max_heizleistung)
akku = PVAkku(akku_size)
discharge_array = np.full(24,1)
akku = PVAkku(akku_size,prediction_hours)
discharge_array = np.full(prediction_hours,1)
# Load Forecast
###############
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
pprint(leistung_haushalt.shape)
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
# PV Forecast
###############
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
pv_forecast = PVforecast.get_forecast_for_date(date)
temperature_forecast = PVforecast.get_temperature_forecast_for_date(date)
pprint(pv_forecast.shape)
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
# Strompreise
###############
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
#price_forecast = HourlyElectricityPriceForecast(source=filepath)
price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.net/prices?start="+date+"&end="+date+"")
specific_date_prices = price_forecast.get_price_for_date(date)
pprint(f"Preise für {date}: {specific_date_prices}")
price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.net/prices?start="+date_now+"&end="+date+"")
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
# WP
leistung_wp = wp.simulate_24h(temperature_forecast)
@ -64,9 +62,10 @@ load = leistung_haushalt + leistung_wp
# EMS / Stromzähler Bilanz
ems = EnergieManagementSystem(akku, load, pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
o = ems.simuliere()
o = ems.simuliere_ab_jetzt()
pprint(o)
pprint(o["Gesamtbilanz_Euro"])
#sys.exit()
# Optimierung
@ -77,7 +76,7 @@ def evaluate(individual):
#akku.set_discharge_per_hour(individual)
ems.reset()
ems.set_akku_discharge_hours(individual)
o = ems.simuliere()
o = ems.simuliere_ab_jetzt()
gesamtbilanz = o["Gesamtbilanz_Euro"]
#print(individual, " ",gesamtbilanz)
return (gesamtbilanz,)
@ -88,7 +87,7 @@ creator.create("Individual", list, fitness=creator.FitnessMin)
toolbox = base.Toolbox()
toolbox.register("attr_bool", random.randint, 0, 1)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, 24)
toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_bool, prediction_hours)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evaluate)
@ -114,7 +113,7 @@ best_solution = optimize()
print("Beste Lösung:", best_solution)
ems.set_akku_discharge_hours(best_solution)
o = ems.simuliere()
o = ems.simuliere_ab_jetzt()
pprint(o["Gesamtbilanz_Euro"])