mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
E-Auto/Wallbox wird jetzt mit diskreten Ladezuständen versehen, in der
config.py einstellbar Jeder DisCharge = 0 (Akkus nicht benutzen) wird mit 1Cent Strafe belegt, da die Lastverteilung fehlt. Also wenn es egal ist, soll er den Akku anschalten.
This commit is contained in:
parent
c03d5f386a
commit
8f1d23fe9d
@ -30,7 +30,7 @@ class Wechselrichter:
|
||||
# Akku
|
||||
geladene_energie, verluste_laden_akku = self.akku.energie_laden(restleistung_nach_verbrauch, hour)
|
||||
rest_überschuss = restleistung_nach_verbrauch - (geladene_energie+verluste_laden_akku)
|
||||
# if hour == 12:
|
||||
# if hour == 1:
|
||||
# print("Erzeugung:",erzeugung)
|
||||
# print("Last:",verbrauch)
|
||||
# print("Akku:",geladene_energie)
|
||||
@ -44,8 +44,8 @@ class Wechselrichter:
|
||||
verluste += rest_überschuss - netzeinspeisung
|
||||
else:
|
||||
netzeinspeisung = rest_überschuss
|
||||
#if hour ==10:
|
||||
# print(rest_überschuss," ",restleistung_nach_verbrauch, " Gela:",geladene_energie," Ver:",verluste_laden_akku)
|
||||
#if hour ==14:
|
||||
# print("Erz:",erzeugung," Last:",verbrauch, " RestPV:",rest_überschuss," ",restleistung_nach_verbrauch, " Gela:",geladene_energie," Ver:",verluste_laden_akku," Einsp:",netzeinspeisung)
|
||||
verluste += verluste_laden_akku
|
||||
|
||||
|
||||
@ -71,73 +71,4 @@ class Wechselrichter:
|
||||
eigenverbrauch = erzeugung + aus_akku
|
||||
|
||||
|
||||
# if erzeugung > verbrauch:
|
||||
# if verbrauch > self.max_leistung_wh:
|
||||
|
||||
# else:
|
||||
|
||||
|
||||
# überschuss = self.max_leistung_wh - verbrauch
|
||||
|
||||
# geladene_energie, verluste_laden_akku = self.akku.energie_laden(überschuss, hour)
|
||||
# rest_überschuss = überschuss - geladene_energie
|
||||
# verluste += verluste_laden_akku
|
||||
|
||||
# if (rest_überschuss > self.max_leistung_wh):
|
||||
# netzeinspeisung = self.max_leistung_wh
|
||||
# verluste += rest_überschuss - self.max_leistung_wh
|
||||
# else:
|
||||
# netzeinspeisung = rest_überschuss
|
||||
|
||||
# eigenverbrauch = verbrauch
|
||||
|
||||
# else:
|
||||
# benötigte_energie = verbrauch - erzeugung
|
||||
# max_akku_leistung = self.akku.max_ladeleistung_w
|
||||
|
||||
# rest_ac_leistung = max(max_akku_leistung - erzeugung,0)
|
||||
|
||||
# if benötigte_energie < rest_ac_leistung:
|
||||
# aus_akku, akku_entladeverluste = self.akku.energie_abgeben(benötigte_energie, hour)
|
||||
# else:
|
||||
# aus_akku, akku_entladeverluste = self.akku.energie_abgeben(rest_ac_leistung, hour)
|
||||
|
||||
|
||||
# verluste += akku_entladeverluste
|
||||
|
||||
# netzbezug = benötigte_energie - aus_akku
|
||||
# eigenverbrauch = erzeugung + aus_akku
|
||||
|
||||
# # Berechnung der gesamten verarbeiteten Energie
|
||||
# total_verarbeitet = eigenverbrauch
|
||||
# if total_verarbeitet > self.max_leistung_wh:
|
||||
# verluste += total_verarbeitet - self.max_leistung_wh
|
||||
|
||||
return netzeinspeisung, netzbezug, verluste, eigenverbrauch
|
||||
|
||||
|
||||
# def energie_verarbeiten(self, erzeugung, verbrauch, hour):
|
||||
|
||||
# verluste = 0
|
||||
# netzeinspeisung = 0
|
||||
# netzbezug = 0.0
|
||||
# eigenverbrauch = 0.0
|
||||
|
||||
# if erzeugung > verbrauch:
|
||||
# überschuss = erzeugung - verbrauch
|
||||
# geladene_energie, verluste_laden_akku = self.akku.energie_laden(überschuss, hour)
|
||||
# verluste += verluste_laden_akku
|
||||
|
||||
# netzeinspeisung = überschuss - geladene_energie-verluste_laden_akku
|
||||
# eigenverbrauch = verbrauch
|
||||
# netzbezug = 0.0
|
||||
# # Noch Netzbezug nötig
|
||||
# else:
|
||||
# netzeinspeisung = 0.0
|
||||
# benötigte_energie = verbrauch - erzeugung
|
||||
# aus_akku, akku_entladeverluste = self.akku.energie_abgeben(benötigte_energie, hour)
|
||||
# verluste += akku_entladeverluste
|
||||
# netzbezug = benötigte_energie - aus_akku
|
||||
# eigenverbrauch = erzeugung+aus_akku
|
||||
|
||||
# return netzeinspeisung, netzbezug, verluste, eigenverbrauch # Keine Einspeisung, Netzbezug, aus Akku, Verluste, Eigenverbrauch
|
||||
|
@ -23,7 +23,8 @@ from deap import base, creator, tools, algorithms
|
||||
import numpy as np
|
||||
import random
|
||||
import os
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from config import *
|
||||
|
||||
def isfloat(num):
|
||||
try:
|
||||
@ -38,7 +39,7 @@ class optimization_problem:
|
||||
self.strafe = strafe
|
||||
self.opti_param = None
|
||||
self.fixed_eauto_hours = prediction_hours-optimization_hours
|
||||
|
||||
self.possible_charge_values = moegliche_ladestroeme_in_prozent
|
||||
|
||||
|
||||
def split_individual(self, individual):
|
||||
@ -74,7 +75,9 @@ class optimization_problem:
|
||||
# PARAMETER
|
||||
self.toolbox = base.Toolbox()
|
||||
self.toolbox.register("attr_bool", random.randint, 0, 1)
|
||||
self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||
#self.toolbox.register("attr_float", random.uniform, 0, 1) # Für kontinuierliche Werte zwischen 0 und 1 (z.B. für E-Auto-Ladeleistung)
|
||||
self.toolbox.register("attr_choice", random.choice, self.possible_charge_values) # Für diskrete Ladeströme
|
||||
|
||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||
|
||||
###################
|
||||
@ -83,14 +86,14 @@ class optimization_problem:
|
||||
if opti_param["haushaltsgeraete"]>0:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs.append(self.toolbox.attr_int()) # Haushaltsgerät-Startzeit
|
||||
return creator.Individual(attrs)
|
||||
|
||||
else:
|
||||
def create_individual():
|
||||
attrs = [self.toolbox.attr_bool() for _ in range(self.prediction_hours)] # 24 Bool-Werte für Entladen
|
||||
attrs += [self.toolbox.attr_float() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
attrs += [self.toolbox.attr_choice() for _ in range(self.prediction_hours)] # 24 Float-Werte für Laden
|
||||
return creator.Individual(attrs)
|
||||
|
||||
|
||||
@ -113,14 +116,14 @@ class optimization_problem:
|
||||
|
||||
|
||||
|
||||
|
||||
#discharge_hours_bin = np.full(self.prediction_hours,0)
|
||||
ems.set_akku_discharge_hours(discharge_hours_bin)
|
||||
|
||||
# Setze die festen Werte für die letzten x Stunden
|
||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||
eautocharge_hours_float[i] = 0.0 # Setze die letzten x Stunden auf einen festen Wert (oder vorgegebenen Wert)
|
||||
|
||||
|
||||
#print(eautocharge_hours_float)
|
||||
|
||||
ems.set_eauto_charge_hours(eautocharge_hours_float)
|
||||
|
||||
@ -141,9 +144,15 @@ class optimization_problem:
|
||||
if worst_case:
|
||||
gesamtbilanz = gesamtbilanz * -1.0
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_float, spuelstart_int = self.split_individual(individual)
|
||||
|
||||
# Für jeden Discharge 0, eine kleine Strafe von 1 Cent, da die Lastvertelung noch fehlt. Also wenn es egal ist, soll er den Akku entladen lassen
|
||||
for i in range(0, self.prediction_hours):
|
||||
if discharge_hours_bin[i] == 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += 0.01 # Bestrafe den Optimierer
|
||||
|
||||
|
||||
# E-Auto nur die ersten self.fixed_eauto_hours
|
||||
eautocharge_hours_float = individual[self.prediction_hours:self.prediction_hours * 2]
|
||||
for i in range(self.prediction_hours - self.fixed_eauto_hours, self.prediction_hours):
|
||||
if eautocharge_hours_float[i] != 0.0: # Wenn die letzten x Stunden von einem festen Wert abweichen
|
||||
gesamtbilanz += self.strafe # Bestrafe den Optimierer
|
||||
@ -186,7 +195,7 @@ class optimization_problem:
|
||||
|
||||
# Genetischer Algorithmus
|
||||
def optimize(self,start_solution=None):
|
||||
population = self.toolbox.population(n=400)
|
||||
population = self.toolbox.population(n=600)
|
||||
hof = tools.HallOfFame(1)
|
||||
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
@ -199,7 +208,7 @@ class optimization_problem:
|
||||
if start_solution is not None and start_solution != -1:
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
|
||||
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=500, stats=stats, halloffame=hof, verbose=True)
|
||||
algorithms.eaMuPlusLambda(population, self.toolbox, mu=200, lambda_=300, cxpb=0.3, mutpb=0.4, ngen=300, stats=stats, halloffame=hof, verbose=True)
|
||||
#algorithms.eaSimple(population, self.toolbox, cxpb=0.2, mutpb=0.2, ngen=1000, stats=stats, halloffame=hof, verbose=True)
|
||||
|
||||
member = {"bilanz":[],"verluste":[],"nebenbedingung":[]}
|
||||
@ -231,12 +240,12 @@ class optimization_problem:
|
||||
akku_size = parameter['pv_akku_cap'] # Wh
|
||||
|
||||
einspeiseverguetung_euro_pro_wh = np.full(self.prediction_hours, parameter["einspeiseverguetung_euro_pro_wh"]) #= # € / Wh 7/(1000.0*100.0)
|
||||
|
||||
discharge_array = np.full(self.prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||
akku = PVAkku(kapazitaet_wh=akku_size,hours=self.prediction_hours,start_soc_prozent=parameter["pv_soc"], max_ladeleistung_w=5000)
|
||||
discharge_array = np.full(self.prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) #
|
||||
akku.set_charge_per_hour(discharge_array)
|
||||
|
||||
|
||||
laden_moeglich = np.full(self.prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0])
|
||||
|
||||
|
||||
eauto = PVAkku(kapazitaet_wh=parameter["eauto_cap"], hours=self.prediction_hours, lade_effizienz=parameter["eauto_charge_efficiency"], entlade_effizienz=1.0, max_ladeleistung_w=parameter["eauto_charge_power"] ,start_soc_prozent=parameter["eauto_soc"])
|
||||
eauto.set_charge_per_hour(laden_moeglich)
|
||||
min_soc_eauto = parameter['eauto_min_soc']
|
||||
|
170
test.py
170
test.py
@ -23,7 +23,7 @@ import os
|
||||
|
||||
|
||||
|
||||
start_hour = 13
|
||||
start_hour = 10
|
||||
|
||||
pv_forecast= [
|
||||
0,
|
||||
@ -33,45 +33,45 @@ pv_forecast= [
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
35.4104640357043,
|
||||
436.191574979506,
|
||||
734.585613834398,
|
||||
914.346108603927,
|
||||
1019.5228214119,
|
||||
1766.84136350058,
|
||||
5980.60975052259,
|
||||
6236.00681862336,
|
||||
5893.38154543782,
|
||||
4309.88538120413,
|
||||
3338.29004915145,
|
||||
2177.55660706753,
|
||||
1091.00542545193,
|
||||
437.819525591319,
|
||||
44.2226537829726,
|
||||
8.05499380056326,
|
||||
352.906710152794,
|
||||
728.510230116837,
|
||||
930.282113186742,
|
||||
1043.25445504815,
|
||||
1106.74498341506,
|
||||
1161.69140358941,
|
||||
6018.82237954771,
|
||||
5519.06508185542,
|
||||
3969.87633262384,
|
||||
3017.96293205546,
|
||||
1943.06957539177,
|
||||
1007.17065928121,
|
||||
319.672404988219,
|
||||
7.87634136648885,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
-0.0269415125679914,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
25.5745140893473,
|
||||
494.188146846569,
|
||||
943.821134036728,
|
||||
1458.66413119635,
|
||||
1819.46147983229,
|
||||
2127.45430524539,
|
||||
2267.78128099068,
|
||||
5944.86706099518,
|
||||
5337.1322153025,
|
||||
4376.56125932204,
|
||||
3020.00212091936,
|
||||
2414.53994231359,
|
||||
1373.626161377,
|
||||
517.764497317134,
|
||||
35.619750070296,
|
||||
0,
|
||||
5.04340865393592,
|
||||
335.585179721385,
|
||||
705.32093965119,
|
||||
1121.11845108965,
|
||||
1604.78796905453,
|
||||
2157.38417470292,
|
||||
1433.25331647539,
|
||||
5718.48693381975,
|
||||
4553.95522042393,
|
||||
3027.5471975751,
|
||||
2574.46499468404,
|
||||
1720.39712914078,
|
||||
963.402827741714,
|
||||
383.299960578605,
|
||||
0,
|
||||
0,
|
||||
0
|
||||
]
|
||||
@ -177,60 +177,60 @@ strompreis_euro_pro_wh = [
|
||||
0.00027800228
|
||||
]
|
||||
gesamtlast= [
|
||||
546.16318964697,
|
||||
893.072526185525,
|
||||
448.7325491406,
|
||||
460.696954446666,
|
||||
497.688171532182,
|
||||
468.186120420737,
|
||||
424.440426628658,
|
||||
454.341890696582,
|
||||
1070.45287392313,
|
||||
1096.46234344204,
|
||||
1199.71317588613,
|
||||
1294.39989535284,
|
||||
1459.42631059004,
|
||||
1295.23757474948,
|
||||
1304.65748778424,
|
||||
1187.47511606455,
|
||||
1309.49984671163,
|
||||
1106.60773651081,
|
||||
1098.98136451936,
|
||||
2112.82264661039,
|
||||
1143.37118921705,
|
||||
858.863135790621,
|
||||
787.018517493612,
|
||||
693.683533270357,
|
||||
545.860858342826,
|
||||
892.702692835489,
|
||||
448.372058076642,
|
||||
460.284228901714,
|
||||
498.457870099476,
|
||||
469.01826331988,
|
||||
424.293997897019,
|
||||
454.660942633609,
|
||||
1070.71990586461,
|
||||
1096.44557410693,
|
||||
1199.72027861112,
|
||||
1294.75410706442,
|
||||
1459.61174223338,
|
||||
1295.77661554687,
|
||||
1304.95591385395,
|
||||
1188.62778631227,
|
||||
1310.43099742786,
|
||||
1108.58589249073,
|
||||
1101.73849714744,
|
||||
2114.05576978017,
|
||||
1143.68031998738,
|
||||
858.607350786608,
|
||||
786.574111043611,
|
||||
693.463415886943
|
||||
676.712691350422,
|
||||
876.187995931743,
|
||||
527.13496018672,
|
||||
468.8832716908,
|
||||
531.379343927472,
|
||||
517.948592590007,
|
||||
483.146247717859,
|
||||
472.284832630916,
|
||||
1011.67951144825,
|
||||
995.004317471209,
|
||||
1053.06955100748,
|
||||
1063.9080395892,
|
||||
1320.56143113193,
|
||||
1132.02504127723,
|
||||
1163.67246837107,
|
||||
1176.81613875329,
|
||||
1216.21914051274,
|
||||
1103.77675478374,
|
||||
1129.12158352941,
|
||||
1178.70748410006,
|
||||
1050.97894301995,
|
||||
988.55813665172,
|
||||
912.383030600675,
|
||||
704.613809064162,
|
||||
516.371536532904,
|
||||
868.049462163551,
|
||||
694.342395302237,
|
||||
608.791374542592,
|
||||
556.310160150771,
|
||||
488.88509383088,
|
||||
506.910948217211,
|
||||
804.891484351704,
|
||||
1141.97850300923,
|
||||
1056.97012155463,
|
||||
992.46421110044,
|
||||
1155.98941936038,
|
||||
827.012550864246,
|
||||
1257.97979633947,
|
||||
1232.66876472966,
|
||||
871.261677859026,
|
||||
860.884647456424,
|
||||
1158.02879027548,
|
||||
1222.71811626233,
|
||||
1221.03860924522,
|
||||
949.989048056282,
|
||||
987.007654562746,
|
||||
733.993140774617,
|
||||
592.972573276025
|
||||
]
|
||||
|
||||
start_solution= [
|
||||
0,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
1,
|
||||
1,
|
||||
0,
|
||||
1,
|
||||
@ -325,11 +325,11 @@ start_solution= [
|
||||
1,
|
||||
1
|
||||
]
|
||||
parameter= {"preis_euro_pro_wh_akku": 30e-05,'pv_soc': 95.00, 'pv_akku_cap': 30000, 'year_energy': 4100000, 'einspeiseverguetung_euro_pro_wh': 7e-05, 'max_heizleistung': 1000,"gesamtlast":gesamtlast, 'pv_forecast': pv_forecast, "temperature_forecast":temperature_forecast, "strompreis_euro_pro_wh":strompreis_euro_pro_wh, 'eauto_min_soc': 0, 'eauto_cap': 60000, 'eauto_charge_efficiency': 0.95, 'eauto_charge_power': 7590, 'eauto_soc': 53, 'pvpowernow': 211.137503624, 'start_solution': start_solution, 'haushaltsgeraet_wh': 937, 'haushaltsgeraet_dauer': 0}
|
||||
parameter= {"preis_euro_pro_wh_akku": 10e-05,'pv_soc': 80, 'pv_akku_cap': 26400, 'year_energy': 4100000, 'einspeiseverguetung_euro_pro_wh': 7e-05, 'max_heizleistung': 1000,"gesamtlast":gesamtlast, 'pv_forecast': pv_forecast, "temperature_forecast":temperature_forecast, "strompreis_euro_pro_wh":strompreis_euro_pro_wh, 'eauto_min_soc': 0, 'eauto_cap': 60000, 'eauto_charge_efficiency': 0.95, 'eauto_charge_power': 11040, 'eauto_soc': 54, 'pvpowernow': 211.137503624, 'start_solution': start_solution, 'haushaltsgeraet_wh': 937, 'haushaltsgeraet_dauer': 0}
|
||||
|
||||
|
||||
|
||||
opt_class = optimization_problem(prediction_hours=48, strafe=10,optimization_hours=24)
|
||||
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour)
|
||||
print(ergebnis)
|
||||
print(jsonify(ergebnis))
|
||||
#print(ergebnis)
|
||||
#print(jsonify(ergebnis))
|
Loading…
x
Reference in New Issue
Block a user