Einzeltestfall auf neusten Stand gebracht

This commit is contained in:
Bla Bla 2024-08-21 08:34:31 +02:00
parent 87dd54e554
commit 94161fad20

333
test.py
View File

@ -22,45 +22,312 @@ import os
start_hour = 8 start_hour = 8
# prediction_hours = 24
# date = (datetime.now().date() + timedelta(hours = prediction_hours)).strftime("%Y-%m-%d")
# date_now = datetime.now().strftime("%Y-%m-%d")
# akku_size = 30000 # Wh pv_forecast= [
# year_energy = 2000*1000 #Wh 0,
# einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, 7/(1000.0*100.0)) # € / Wh 0,
0,
0,
0,
0,
0,
46.0757222688471,
474.780954810247,
1049.36036517475,
1676.86962934168,
2037.0885036865,
2600.03233682621,
5307.79424852068,
5214.54927119013,
5392.8995394438,
4229.09283442043,
3568.84965239262,
2627.95972505784,
1618.04209206715,
718.733713468062,
102.060092599437,
0,
0,
0,
0,
0,
-0.068771006309608,
0,
0.0275649587447597,
0,
53.980235336087,
543.602674801833,
852.52597210804,
964.253104261402,
1043.15079499546,
1333.69973977172,
6901.19158127423,
6590.62442617817,
6161.97317306069,
4530.33886807194,
3535.37982191984,
2388.65608163334,
1365.10812389941,
557.452392556485,
82.376303341511,
0.026903650788687,
0
]
temperature_forecast= [
18.3,
17.8,
16.9,
16.2,
15.6,
15.1,
14.6,
14.2,
14.3,
14.8,
15.7,
16.7,
17.4,
18,
18.6,
19.2,
19.1,
18.7,
18.5,
17.7,
16.2,
14.6,
13.6,
13,
12.6,
12.2,
11.7,
11.6,
11.3,
11,
10.7,
10.2,
11.4,
14.4,
16.4,
18.3,
19.5,
20.7,
21.9,
22.7,
23.1,
23.1,
22.8,
21.8,
20.2,
19.1,
18,
17.4
]
# max_heizleistung = 1000 # 5 kW Heizleistung strompreis_euro_pro_wh = [
# wp = Waermepumpe(max_heizleistung,prediction_hours) 0.00031540228,
0.00031000228,
0.00029390228,
0.00028410228,
0.00028840228,
0.00028800228,
0.00030930228,
0.00031390228,
0.00031540228,
0.00028120228,
0.00022820228,
0.00022310228,
0.00021500228,
0.00020770228,
0.00020670228,
0.00021200228,
0.00021540228,
0.00023000228,
0.00029530228,
0.00032990228,
0.00036840228,
0.00035900228,
0.00033140228,
0.00031370228,
0.00031540228,
0.00031000228,
0.00029390228,
0.00028410228,
0.00028840228,
0.00028800228,
0.00030930228,
0.00031390228,
0.00031540228,
0.00028120228,
0.00022820228,
0.00022310228,
0.00021500228,
0.00020770228,
0.00020670228,
0.00021200228,
0.00021540228,
0.00023000228,
0.00029530228,
0.00032990228,
0.00036840228,
0.00035900228,
0.00033140228,
0.00031370228
]
gesamtlast= [
723.794862683391,
743.491222629184,
836.32034938972,
870.858204290382,
877.988917620097,
857.94124236693,
535.7468553632,
658.119336334815,
955.15298014833,
2636.705125629,
1321.53672393798,
1488.77669263834,
1129.61536474922,
1261.47022563591,
1308.42804416213,
1740.76791896787,
989.769241971553,
1291.60060799951,
1360.9198505883,
1290.04968399465,
989.968377880823,
1121.41872787695,
1250.64584231737,
852.708926147066,
723.492531379247,
743.121389279149,
835.959858325763,
870.44547874543,
878.758616187391,
858.773385266073,
535.600426631561,
658.438388271842,
955.420012089818,
2636.68835629389,
1321.54382666298,
1489.13090434992,
1129.80079639256,
1262.0092664333,
1308.72647023183,
1741.92058921559,
990.700392687782,
1293.57876397944,
1363.67698321638,
1291.28280716443,
990.277508651153,
1121.16294287294,
1250.20143586737,
852.488808763652
]
# akku = PVAkku(akku_size,prediction_hours) start_solution= [
# discharge_array = np.full(prediction_hours,1) #np.array([1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0]) # 0,
1,
# laden_moeglich = np.full(prediction_hours,1) # np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0]) 0,
# #np.full(prediction_hours,1) 1,
# eauto = PVAkku(kapazitaet_wh=60000, hours=prediction_hours, lade_effizienz=0.95, entlade_effizienz=1.0, max_ladeleistung_w=10000 ,start_soc_prozent=10) 0,
# eauto.set_charge_per_hour(laden_moeglich) 1,
# min_soc_eauto = 80 0,
# hohe_strafe = 10.0 0,
#[1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1] 1,
individual = [1, 1, # 0 1,
0, 1, # 1 1,
0, 0, # 2 0,
0, 1, # 3 1,
0, 0, # 4 0,
1, 0, # 5 1,
0, 1, # 6 0,
0, 0, # 7 1,
0, 0, # 8 0,
1, 0, 1,
0, 0, 0,
1, 0, 1,
0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1] 0,
parameter= {'pv_soc': 92.4052, 'pv_akku_cap': 30000, 'year_energy': 4100000, 'einspeiseverguetung_euro_pro_wh': 7e-05, 'max_heizleistung': 1000, 'pv_forecast_url': 'https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m', 'eauto_min_soc': 100, 'eauto_cap': 60000, 'eauto_charge_efficiency': 0.95, 'eauto_charge_power': 5500, 'eauto_soc': 77, 'pvpowernow': 211.137503624, 'start_solution': individual, 'haushaltsgeraet_wh': 937, 'haushaltsgeraet_dauer': 0} 1,
0,
1,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
parameter= {'pv_soc': 92.4052, 'pv_akku_cap': 30000, 'year_energy': 4100000, 'einspeiseverguetung_euro_pro_wh': 7e-05, 'max_heizleistung': 1000,"gesamtlast":gesamtlast, 'pv_forecast': pv_forecast, "temperature_forecast":temperature_forecast, "strompreis_euro_pro_wh":strompreis_euro_pro_wh, 'eauto_min_soc': 100, 'eauto_cap': 60000, 'eauto_charge_efficiency': 0.95, 'eauto_charge_power': 5500, 'eauto_soc': 77, 'pvpowernow': 211.137503624, 'start_solution': start_solution, 'haushaltsgeraet_wh': 937, 'haushaltsgeraet_dauer': 0}
opt_class = optimization_problem(prediction_hours=24, strafe=10) opt_class = optimization_problem(prediction_hours=48, strafe=10)
ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour) ergebnis = opt_class.optimierung_ems(parameter=parameter, start_hour=start_hour)