feat: improve config backup and update and revert (#737)
Some checks failed
docker-build / platform-excludes (push) Has been cancelled
docker-build / build (push) Has been cancelled
docker-build / merge (push) Has been cancelled
pre-commit / pre-commit (push) Has been cancelled
Run Pytest on Pull Request / test (push) Has been cancelled

Improve the backup of the EOS configuration on configuration migration
from another version. Backup files now get a backup id based on date
and time.

Add the configuration backup listing and the revert to the backup to
the EOS api.

Add revert to backup to the EOSdash admin tab.

Improve documentation about install, update and revert of EOS versions.

Add EOS execution profiling to make commands and to test description in
the development guideline.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2025-11-03 17:40:25 +01:00
committed by GitHub
parent 3432116845
commit 94c4ee2951
14 changed files with 707 additions and 170 deletions

526
tests/single_test_optimization.py Executable file
View File

@@ -0,0 +1,526 @@
#!/usr/bin/env python3
import argparse
import asyncio
import cProfile
import json
import pstats
import sys
import time
from typing import Any
import numpy as np
from loguru import logger
from akkudoktoreos.config.config import get_config
from akkudoktoreos.core.ems import get_ems
from akkudoktoreos.core.emsettings import EnergyManagementMode
from akkudoktoreos.optimization.genetic.geneticparams import (
GeneticOptimizationParameters,
)
from akkudoktoreos.prediction.prediction import get_prediction
from akkudoktoreos.utils.datetimeutil import to_datetime
config_eos = get_config()
prediction_eos = get_prediction()
ems_eos = get_ems()
def prepare_optimization_real_parameters() -> GeneticOptimizationParameters:
"""Prepare and return optimization parameters with real world data.
Returns:
GeneticOptimizationParameters: Configured optimization parameters
"""
# Make a config
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"optimization": {
"horizon_hours": 24,
"interval": 3600,
"genetic": {
"individuals": 300,
"generations": 400,
"seed": None,
"penalties": {
"ev_soc_miss": 10,
},
},
},
# PV Forecast
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
# Weather Forecast
"weather": {
"provider": "ClearOutside",
},
# Electricity Price Forecast
"elecprice": {
"provider": "ElecPriceAkkudoktor",
},
# Load Forecast
"load": {
"provider": "LoadAkkudoktor",
"provider_settings": {
"LoadAkkudoktor": {
"loadakkudoktor_year_energy_kwh": 5000, # Energy consumption per year in kWh
},
},
},
# -- Simulations --
# Assure we have charge rates for the EV
"devices": {
"max_electric_vehicles": 1,
"electric_vehicles": [
{
"charge_rates": [
0.0,
6.0 / 16.0,
8.0 / 16.0,
10.0 / 16.0,
12.0 / 16.0,
14.0 / 16.0,
1.0,
],
},
],
},
}
# Update/ set configuration
config_eos.merge_settings_from_dict(settings)
# Get current prediction data for optimization run
ems_eos.set_start_datetime()
print(
f"Real data prediction from {prediction_eos.ems_start_datetime} to {prediction_eos.end_datetime}"
)
prediction_eos.update_data()
# PV Forecast (in W)
pv_forecast = prediction_eos.key_to_array(
key="pvforecast_ac_power",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"pv_forecast: {pv_forecast}")
# Temperature Forecast (in degree C)
temperature_forecast = prediction_eos.key_to_array(
key="weather_temp_air",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"temperature_forecast: {temperature_forecast}")
# Electricity Price (in Euro per Wh)
strompreis_euro_pro_wh = prediction_eos.key_to_array(
key="elecprice_marketprice_wh",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"strompreis_euro_pro_wh: {strompreis_euro_pro_wh}")
# Overall System Load (in W)
gesamtlast = prediction_eos.key_to_array(
key="load_mean",
start_datetime=prediction_eos.ems_start_datetime,
end_datetime=prediction_eos.end_datetime,
)
print(f"gesamtlast: {gesamtlast}")
# Start Solution (binary)
start_solution = None
print(f"start_solution: {start_solution}")
# Define parameters for the optimization problem
return GeneticOptimizationParameters(
**{
"ems": {
"preis_euro_pro_wh_akku": 0e-05,
"einspeiseverguetung_euro_pro_wh": 7e-05,
"gesamtlast": gesamtlast,
"pv_prognose_wh": pv_forecast,
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"device_id": "battery 1",
"capacity_wh": 26400,
"initial_soc_percentage": 15,
"min_soc_percentage": 15,
},
"inverter": {
"device_id": "inverter 1",
"max_power_wh": 10000,
"battery_id": "battery 1",
},
"eauto": {
"device_id": "electric vehicle 1",
"min_soc_percentage": 50,
"capacity_wh": 60000,
"charging_efficiency": 0.95,
"max_charge_power_w": 11040,
"initial_soc_percentage": 5,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
)
def prepare_optimization_parameters() -> GeneticOptimizationParameters:
"""Prepare and return optimization parameters with predefined data.
Returns:
GeneticOptimizationParameters: Configured optimization parameters
"""
# Initialize the optimization problem using the default configuration
config_eos.merge_settings_from_dict(
{
"prediction": {"hours": 48},
"optimization": {
"horizon_hours": 48,
"interval": 3600,
"genetic": {
"individuals": 300,
"generations": 400,
"seed": None,
"penalties": {
"ev_soc_miss": 10,
},
},
},
# Assure we have charge rates for the EV
"devices": {
"max_electric_vehicles": 1,
"electric_vehicles": [
{
"device_id": "Default EV",
"charge_rates": [
0.0,
6.0 / 16.0,
8.0 / 16.0,
10.0 / 16.0,
12.0 / 16.0,
14.0 / 16.0,
1.0,
],
},
],
},
}
)
# PV Forecast (in W)
pv_forecast = np.zeros(48)
pv_forecast[12] = 5000
# Temperature Forecast (in degree C)
temperature_forecast = [
18.3,
17.8,
16.9,
16.2,
15.6,
15.1,
14.6,
14.2,
14.3,
14.8,
15.7,
16.7,
17.4,
18.0,
18.6,
19.2,
19.1,
18.7,
18.5,
17.7,
16.2,
14.6,
13.6,
13.0,
12.6,
12.2,
11.7,
11.6,
11.3,
11.0,
10.7,
10.2,
11.4,
14.4,
16.4,
18.3,
19.5,
20.7,
21.9,
22.7,
23.1,
23.1,
22.8,
21.8,
20.2,
19.1,
18.0,
17.4,
]
# Electricity Price (in Euro per Wh)
strompreis_euro_pro_wh = np.full(48, 0.001)
strompreis_euro_pro_wh[0:10] = 0.00001
strompreis_euro_pro_wh[11:15] = 0.00005
strompreis_euro_pro_wh[20] = 0.00001
# Overall System Load (in W)
gesamtlast = [
676.71,
876.19,
527.13,
468.88,
531.38,
517.95,
483.15,
472.28,
1011.68,
995.00,
1053.07,
1063.91,
1320.56,
1132.03,
1163.67,
1176.82,
1216.22,
1103.78,
1129.12,
1178.71,
1050.98,
988.56,
912.38,
704.61,
516.37,
868.05,
694.34,
608.79,
556.31,
488.89,
506.91,
804.89,
1141.98,
1056.97,
992.46,
1155.99,
827.01,
1257.98,
1232.67,
871.26,
860.88,
1158.03,
1222.72,
1221.04,
949.99,
987.01,
733.99,
592.97,
]
# Start Solution (binary)
start_solution = None
# Define parameters for the optimization problem
return GeneticOptimizationParameters(
**{
"ems": {
"preis_euro_pro_wh_akku": 0e-05,
"einspeiseverguetung_euro_pro_wh": 7e-05,
"gesamtlast": gesamtlast,
"pv_prognose_wh": pv_forecast,
"strompreis_euro_pro_wh": strompreis_euro_pro_wh,
},
"pv_akku": {
"device_id": "battery 1",
"capacity_wh": 26400,
"initial_soc_percentage": 15,
"min_soc_percentage": 15,
},
"inverter": {
"device_id": "inverter 1",
"max_power_wh": 10000,
"battery_id": "battery 1",
},
"eauto": {
"device_id": "electric vehicle 1",
"min_soc_percentage": 50,
"capacity_wh": 60000,
"charging_efficiency": 0.95,
"max_charge_power_w": 11040,
"initial_soc_percentage": 5,
},
"temperature_forecast": temperature_forecast,
"start_solution": start_solution,
}
)
def run_optimization(
real_world: bool, start_hour: int, verbose: bool, seed: int, parameters_file: str, ngen: int
) -> Any:
"""Run the optimization problem.
Args:
start_hour (int, optional): Starting hour for optimization. Defaults to 0.
verbose (bool, optional): Whether to print verbose output. Defaults to False.
Returns:
dict: Optimization result as a dictionary
"""
# Prepare parameters
if parameters_file:
with open(parameters_file, "r") as f:
parameters = GeneticOptimizationParameters(**json.load(f))
elif real_world:
parameters = prepare_optimization_real_parameters()
else:
parameters = prepare_optimization_parameters()
logger.info("Optimization Parameters:")
logger.info(parameters.model_dump_json(indent=4))
if start_hour is None:
start_datetime = None
else:
start_datetime = to_datetime().set(hour=start_hour)
asyncio.run(
ems_eos.run(
start_datetime=start_datetime,
mode=EnergyManagementMode.OPTIMIZATION,
genetic_parameters=parameters,
genetic_individuals=ngen,
genetic_seed=seed,
)
)
solution = ems_eos.genetic_solution()
if solution is None:
return None
return solution.model_dump_json()
def main():
"""Main function to run the optimization script with optional profiling."""
parser = argparse.ArgumentParser(description="Run Energy Optimization Simulation")
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
parser.add_argument(
"--verbose", action="store_true", help="Enable verbose output during optimization"
)
parser.add_argument(
"--real-world", action="store_true", help="Use real world data for predictions"
)
parser.add_argument(
"--start-hour", type=int, default=0, help="Starting hour for optimization (default: 0)"
)
parser.add_argument(
"--parameters-file",
type=str,
default="",
help="Load optimization parameters from json file (default: unset)",
)
parser.add_argument("--seed", type=int, default=42, help="Use fixed random seed (default: 42)")
parser.add_argument(
"--ngen",
type=int,
default=400,
help="Number of generations during optimization process (default: 400)",
)
args = parser.parse_args()
if args.profile:
# Run with profiling
profiler = cProfile.Profile()
try:
result = profiler.runcall(
run_optimization,
real_world=args.real_world,
start_hour=args.start_hour,
verbose=args.verbose,
seed=args.seed,
parameters_file=args.parameters_file,
ngen=args.ngen,
)
# Print profiling statistics
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
# Print result
if args.verbose:
print("\nOptimization Result:")
print(result)
except Exception as e:
print(f"Error during optimization: {e}", file=sys.stderr)
sys.exit(1)
else:
# Run without profiling
try:
start_time = time.time()
result = run_optimization(
real_world=args.real_world,
start_hour=args.start_hour,
verbose=args.verbose,
seed=args.seed,
parameters_file=args.parameters_file,
ngen=args.ngen,
)
end_time = time.time()
elapsed_time = end_time - start_time
if args.verbose:
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
print("\nOptimization Result:")
print(result)
except Exception as e:
print(f"Error during optimization: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,229 @@
#!/usr/bin/env python3
import argparse
import cProfile
import pstats
import sys
import time
from akkudoktoreos.config.config import get_config
from akkudoktoreos.prediction.prediction import get_prediction
config_eos = get_config()
prediction_eos = get_prediction()
def config_pvforecast() -> dict:
"""Configure settings for PV forecast."""
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"pvforecast": {
"provider": "PVForecastAkkudoktor",
"planes": [
{
"peakpower": 5.0,
"surface_azimuth": -10,
"surface_tilt": 7,
"userhorizon": [20, 27, 22, 20],
"inverter_paco": 10000,
},
{
"peakpower": 4.8,
"surface_azimuth": -90,
"surface_tilt": 7,
"userhorizon": [30, 30, 30, 50],
"inverter_paco": 10000,
},
{
"peakpower": 1.4,
"surface_azimuth": -40,
"surface_tilt": 60,
"userhorizon": [60, 30, 0, 30],
"inverter_paco": 2000,
},
{
"peakpower": 1.6,
"surface_azimuth": 5,
"surface_tilt": 45,
"userhorizon": [45, 25, 30, 60],
"inverter_paco": 1400,
},
],
},
}
return settings
def config_weather() -> dict:
"""Configure settings for weather forecast."""
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"weather": dict(),
}
return settings
def config_elecprice() -> dict:
"""Configure settings for electricity price forecast."""
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"elecprice": dict(),
}
return settings
def config_feedintarifffixed() -> dict:
"""Configure settings for feed in tariff forecast."""
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
"feedintariff": dict(),
}
return settings
def config_load() -> dict:
"""Configure settings for load forecast."""
settings = {
"general": {
"latitude": 52.52,
"longitude": 13.405,
},
"prediction": {
"hours": 48,
"historic_hours": 24,
},
}
return settings
def run_prediction(provider_id: str, verbose: bool = False) -> str:
"""Run the prediction.
Args:
provider_id (str): ID of prediction provider.
verbose (bool, optional): Whether to print verbose output. Defaults to False.
Returns:
dict: Prediction result as a dictionary
"""
# Initialize the oprediction
config_eos = get_config()
prediction_eos = get_prediction()
if provider_id in ("PVForecastAkkudoktor",):
settings = config_pvforecast()
forecast = "pvforecast"
elif provider_id in ("BrightSky", "ClearOutside"):
settings = config_weather()
forecast = "weather"
elif provider_id in ("ElecPriceAkkudoktor",):
settings = config_elecprice()
forecast = "elecprice"
elif provider_id in ("FeedInTariffFixed",):
settings = config_feedintarifffixed()
forecast = "feedintariff"
elif provider_id in ("LoadAkkudoktor",):
settings = config_load()
forecast = "loadforecast"
settings["load"]["LoadAkkudoktor"]["loadakkudoktor_year_energy_wh"] = 1000
else:
raise ValueError(f"Unknown provider '{provider_id}'.")
settings[forecast]["provider"] = provider_id
config_eos.merge_settings_from_dict(settings)
provider = prediction_eos.provider_by_id(provider_id)
prediction_eos.update_data()
# Return result of prediction
if verbose:
print(f"\nProvider ID: {provider.provider_id()}")
print("----------")
print("\nSettings\n----------")
print(settings)
print("\nProvider\n----------")
print(f"elecprice.provider: {config_eos.elecprice.provider}")
print(f"feedintariff.provider: {config_eos.feedintariff.provider}")
print(f"load.provider: {config_eos.load.provider}")
print(f"pvforecast.provider: {config_eos.pvforecast.provider}")
print(f"weather.provider: {config_eos.weather.provider}")
print(f"enabled: {provider.enabled()}")
for key in provider.record_keys:
print(f"\n{key}\n----------")
print(f"Array: {provider.key_to_array(key)}")
return provider.model_dump_json(indent=4)
def main():
"""Main function to run the optimization script with optional profiling."""
parser = argparse.ArgumentParser(description="Run Prediction")
parser.add_argument("--profile", action="store_true", help="Enable performance profiling")
parser.add_argument(
"--verbose", action="store_true", help="Enable verbose output during prediction"
)
parser.add_argument("--provider-id", type=str, default=0, help="Provider ID of prediction")
args = parser.parse_args()
if args.profile:
# Run with profiling
profiler = cProfile.Profile()
try:
result = profiler.runcall(
run_prediction, provider_id=args.provider_id, verbose=args.verbose
)
# Print profiling statistics
stats = pstats.Stats(profiler)
stats.strip_dirs().sort_stats("cumulative").print_stats(200)
# Print result
print("\nPrediction Result:")
print(result)
except Exception as e:
print(f"Error during prediction: {e}", file=sys.stderr)
sys.exit(1)
else:
# Run without profiling
try:
start_time = time.time()
result = run_prediction(provider_id=args.provider_id, verbose=args.verbose)
end_time = time.time()
elapsed_time = end_time - start_time
print(f"\nElapsed time: {elapsed_time:.4f} seconds.")
print("\nPrediction Result:")
print(result)
except Exception as e:
print(f"Error during prediction: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()