mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-04-19 08:55:15 +00:00
Last Container zum Vereinheitlichen und Bugfixes
This commit is contained in:
parent
e152bb0f48
commit
9e20df9edc
@ -1,6 +1,6 @@
|
|||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
|
from modules.class_generic_load import *
|
||||||
|
|
||||||
|
|
||||||
class EnergieManagementSystem:
|
class EnergieManagementSystem:
|
||||||
@ -10,11 +10,7 @@ class EnergieManagementSystem:
|
|||||||
self.pv_prognose_wh = pv_prognose_wh
|
self.pv_prognose_wh = pv_prognose_wh
|
||||||
self.strompreis_cent_pro_wh = strompreis_cent_pro_wh # Strompreis in Cent pro Wh
|
self.strompreis_cent_pro_wh = strompreis_cent_pro_wh # Strompreis in Cent pro Wh
|
||||||
self.einspeiseverguetung_cent_pro_wh = einspeiseverguetung_cent_pro_wh # Einspeisevergütung in Cent pro Wh
|
self.einspeiseverguetung_cent_pro_wh = einspeiseverguetung_cent_pro_wh # Einspeisevergütung in Cent pro Wh
|
||||||
|
|
||||||
# print("\n\nLastprognose:",self.lastkurve_wh.shape)
|
|
||||||
# print("PV Prognose:",self.pv_prognose_wh.shape)
|
|
||||||
# print("Preis Prognose:",self.strompreis_cent_pro_wh.shape)
|
|
||||||
# sys.exit()
|
|
||||||
|
|
||||||
def set_akku_discharge_hours(self, ds):
|
def set_akku_discharge_hours(self, ds):
|
||||||
self.akku.set_discharge_per_hour(ds)
|
self.akku.set_discharge_per_hour(ds)
|
||||||
@ -42,6 +38,9 @@ class EnergieManagementSystem:
|
|||||||
einnahmen_euro_pro_stunde = []
|
einnahmen_euro_pro_stunde = []
|
||||||
akku_soc_pro_stunde = []
|
akku_soc_pro_stunde = []
|
||||||
|
|
||||||
|
#print(gesamtlast_pro_stunde)
|
||||||
|
#sys.exit()
|
||||||
|
|
||||||
ende = min( len(self.lastkurve_wh),len(self.pv_prognose_wh), len(self.strompreis_cent_pro_wh))
|
ende = min( len(self.lastkurve_wh),len(self.pv_prognose_wh), len(self.strompreis_cent_pro_wh))
|
||||||
#print(ende)
|
#print(ende)
|
||||||
# Berechnet das Ende basierend auf der Länge der Lastkurve
|
# Berechnet das Ende basierend auf der Länge der Lastkurve
|
||||||
|
@ -5,8 +5,9 @@ from pprint import pprint
|
|||||||
|
|
||||||
# Lade die .npz-Datei beim Start der Anwendung
|
# Lade die .npz-Datei beim Start der Anwendung
|
||||||
class Waermepumpe:
|
class Waermepumpe:
|
||||||
def __init__(self, max_heizleistung):
|
def __init__(self, max_heizleistung, prediction_hours):
|
||||||
self.max_heizleistung = max_heizleistung
|
self.max_heizleistung = max_heizleistung
|
||||||
|
self.prediction_hours = prediction_hours
|
||||||
|
|
||||||
def cop_berechnen(self, aussentemperatur):
|
def cop_berechnen(self, aussentemperatur):
|
||||||
cop = 3.0 + (aussentemperatur-0) * 0.1
|
cop = 3.0 + (aussentemperatur-0) * 0.1
|
||||||
@ -26,6 +27,11 @@ class Waermepumpe:
|
|||||||
|
|
||||||
def simulate_24h(self, temperaturen):
|
def simulate_24h(self, temperaturen):
|
||||||
leistungsdaten = []
|
leistungsdaten = []
|
||||||
|
|
||||||
|
# Überprüfen, ob das Temperaturarray die richtige Größe hat
|
||||||
|
if len(temperaturen) != self.prediction_hours:
|
||||||
|
raise ValueError("Das Temperaturarray muss genau "+str(self.prediction_hours)+" Einträge enthalten, einen für jede Stunde des Tages.")
|
||||||
|
|
||||||
for temp in temperaturen:
|
for temp in temperaturen:
|
||||||
elektrische_leistung = self.elektrische_leistung_berechnen(temp)
|
elektrische_leistung = self.elektrische_leistung_berechnen(temp)
|
||||||
leistungsdaten.append(elektrische_leistung)
|
leistungsdaten.append(elektrische_leistung)
|
||||||
|
@ -79,7 +79,7 @@ class LoadForecast:
|
|||||||
data = np.load(self.filepath)
|
data = np.load(self.filepath)
|
||||||
self.data = np.array(list(zip(data["yearly_profiles"],data["yearly_profiles_std"])))
|
self.data = np.array(list(zip(data["yearly_profiles"],data["yearly_profiles_std"])))
|
||||||
self.data_year_energy = self.data * self.year_energy
|
self.data_year_energy = self.data * self.year_energy
|
||||||
pprint(self.data_year_energy)
|
#pprint(self.data_year_energy)
|
||||||
|
|
||||||
def get_price_data(self):
|
def get_price_data(self):
|
||||||
# load_profiles_exp_l = load_profiles_exp*year_energy
|
# load_profiles_exp_l = load_profiles_exp*year_energy
|
||||||
|
35
modules/class_load_container.py
Normal file
35
modules/class_load_container.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
import json
|
||||||
|
from datetime import datetime, timedelta, timezone
|
||||||
|
import numpy as np
|
||||||
|
from pprint import pprint
|
||||||
|
|
||||||
|
class Gesamtlast:
|
||||||
|
def __init__(self):
|
||||||
|
self.lasten = {} # Enthält Namen und Lasten-Arrays für verschiedene Quellen
|
||||||
|
|
||||||
|
def hinzufuegen(self, name, last_array):
|
||||||
|
"""
|
||||||
|
Fügt ein Array von Lasten für eine bestimmte Quelle hinzu.
|
||||||
|
|
||||||
|
:param name: Name der Lastquelle (z.B. "Haushalt", "Wärmepumpe")
|
||||||
|
:param last_array: Array von Lasten, wobei jeder Eintrag einer Stunde entspricht
|
||||||
|
"""
|
||||||
|
self.lasten[name] = last_array
|
||||||
|
|
||||||
|
def gesamtlast_berechnen(self):
|
||||||
|
"""
|
||||||
|
Berechnet die gesamte Last für jede Stunde und gibt ein Array der Gesamtlasten zurück.
|
||||||
|
|
||||||
|
:return: Array der Gesamtlasten, wobei jeder Eintrag einer Stunde entspricht
|
||||||
|
"""
|
||||||
|
if not self.lasten:
|
||||||
|
return []
|
||||||
|
|
||||||
|
# Annahme: Alle Lasten-Arrays haben die gleiche Länge
|
||||||
|
stunden = len(next(iter(self.lasten.values())))
|
||||||
|
gesamtlast_array = [0] * stunden
|
||||||
|
for last_array in self.lasten.values():
|
||||||
|
|
||||||
|
gesamtlast_array = [gesamtlast + stundenlast for gesamtlast, stundenlast in zip(gesamtlast_array, last_array)]
|
||||||
|
|
||||||
|
return np.array(gesamtlast_array)
|
@ -31,16 +31,23 @@ class ForecastData:
|
|||||||
return self.temperature
|
return self.temperature
|
||||||
|
|
||||||
class PVForecast:
|
class PVForecast:
|
||||||
def __init__(self, filepath=None, url=None, cache_dir='cache'):
|
def __init__(self, filepath=None, url=None, cache_dir='cache', prediction_hours = 48):
|
||||||
self.meta = {}
|
self.meta = {}
|
||||||
self.forecast_data = []
|
self.forecast_data = []
|
||||||
self.cache_dir = cache_dir
|
self.cache_dir = cache_dir
|
||||||
|
self.prediction_hours = prediction_hours
|
||||||
|
|
||||||
if not os.path.exists(self.cache_dir):
|
if not os.path.exists(self.cache_dir):
|
||||||
os.makedirs(self.cache_dir)
|
os.makedirs(self.cache_dir)
|
||||||
if filepath:
|
if filepath:
|
||||||
self.load_data_from_file(filepath)
|
self.load_data_from_file(filepath)
|
||||||
elif url:
|
elif url:
|
||||||
self.load_data_with_caching(url)
|
self.load_data_with_caching(url)
|
||||||
|
|
||||||
|
# Überprüfung nach dem Laden der Daten
|
||||||
|
if len(self.forecast_data) < self.prediction_hours:
|
||||||
|
raise ValueError(f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt.")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def process_data(self, data):
|
def process_data(self, data):
|
||||||
@ -72,7 +79,9 @@ class PVForecast:
|
|||||||
self.load_data_from_url(url)
|
self.load_data_from_url(url)
|
||||||
|
|
||||||
def load_data_with_caching(self, url):
|
def load_data_with_caching(self, url):
|
||||||
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url))
|
date = datetime.now().strftime("%Y-%m-%d")
|
||||||
|
|
||||||
|
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url,date))
|
||||||
if os.path.exists(cache_file):
|
if os.path.exists(cache_file):
|
||||||
with open(cache_file, 'r') as file:
|
with open(cache_file, 'r') as file:
|
||||||
data = json.load(file)
|
data = json.load(file)
|
||||||
@ -89,11 +98,11 @@ class PVForecast:
|
|||||||
return
|
return
|
||||||
self.process_data(data)
|
self.process_data(data)
|
||||||
|
|
||||||
def generate_cache_filename(self, url):
|
def generate_cache_filename(self, url,date):
|
||||||
# Erzeugt einen SHA-256 Hash der URL als Dateinamen
|
# Erzeugt einen SHA-256 Hash der URL als Dateinamen
|
||||||
hash_object = hashlib.sha256(url.encode())
|
cache_key = hashlib.sha256(f"{url}{date}".encode('utf-8')).hexdigest()
|
||||||
hex_dig = hash_object.hexdigest()
|
#cache_path = os.path.join(self.cache_dir, cache_key)
|
||||||
return f"cache_{hex_dig}.json"
|
return f"cache_{cache_key}.json"
|
||||||
|
|
||||||
def get_forecast_data(self):
|
def get_forecast_data(self):
|
||||||
return self.forecast_data
|
return self.forecast_data
|
||||||
@ -121,15 +130,16 @@ class PVForecast:
|
|||||||
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
|
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
|
||||||
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
|
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
|
||||||
date_range_forecast = []
|
date_range_forecast = []
|
||||||
|
|
||||||
for data in self.forecast_data:
|
for data in self.forecast_data:
|
||||||
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
|
data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
|
||||||
|
#print(data.get_date_time())
|
||||||
if start_date <= data_date <= end_date:
|
if start_date <= data_date <= end_date:
|
||||||
date_range_forecast.append(data)
|
date_range_forecast.append(data)
|
||||||
|
|
||||||
ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
|
ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
|
||||||
|
|
||||||
return ac_power_forecast
|
return np.array(ac_power_forecast)[:self.prediction_hours]
|
||||||
|
|
||||||
def get_temperature_for_date_range(self, start_date_str, end_date_str):
|
def get_temperature_for_date_range(self, start_date_str, end_date_str):
|
||||||
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
|
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
|
||||||
@ -143,7 +153,7 @@ class PVForecast:
|
|||||||
|
|
||||||
forecast_data = date_range_forecast
|
forecast_data = date_range_forecast
|
||||||
temperature_forecast = [data.get_temperature() for data in forecast_data]
|
temperature_forecast = [data.get_temperature() for data in forecast_data]
|
||||||
return np.array(temperature_forecast)
|
return np.array(temperature_forecast)[:self.prediction_hours]
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -154,3 +164,4 @@ if __name__ == '__main__':
|
|||||||
forecast = PVForecast(r'..\test_data\pvprognose.json')
|
forecast = PVForecast(r'..\test_data\pvprognose.json')
|
||||||
for data in forecast.get_forecast_data():
|
for data in forecast.get_forecast_data():
|
||||||
print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())
|
print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())
|
||||||
|
|
||||||
|
@ -54,7 +54,7 @@ class HourlyElectricityPriceForecast:
|
|||||||
while start_date <= end_date:
|
while start_date <= end_date:
|
||||||
date_str = start_date.strftime("%Y-%m-%d")
|
date_str = start_date.strftime("%Y-%m-%d")
|
||||||
daily_prices = self.get_price_for_date(date_str)
|
daily_prices = self.get_price_for_date(date_str)
|
||||||
print(len(self.get_price_for_date(date_str)))
|
#print(len(self.get_price_for_date(date_str)))
|
||||||
if daily_prices.size > 0:
|
if daily_prices.size > 0:
|
||||||
price_list.extend(daily_prices)
|
price_list.extend(daily_prices)
|
||||||
start_date += timedelta(days=1)
|
start_date += timedelta(days=1)
|
||||||
|
@ -3,8 +3,11 @@ import matplotlib.pyplot as plt
|
|||||||
|
|
||||||
|
|
||||||
def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse):
|
def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse):
|
||||||
stunden = np.arange(1, len(last)+1) # 1 bis 24 Stunden
|
|
||||||
|
#print(last)
|
||||||
|
|
||||||
|
|
||||||
|
stunden = np.arange(1, len(last)+1) # 1 bis 24 Stunden
|
||||||
# Last und PV-Erzeugung
|
# Last und PV-Erzeugung
|
||||||
plt.figure(figsize=(14, 10))
|
plt.figure(figsize=(14, 10))
|
||||||
|
|
||||||
|
38
test.py
38
test.py
@ -7,6 +7,8 @@ from modules.class_pv_forecast import *
|
|||||||
from modules.class_akku import *
|
from modules.class_akku import *
|
||||||
from modules.class_strompreis import *
|
from modules.class_strompreis import *
|
||||||
from modules.class_heatpump import *
|
from modules.class_heatpump import *
|
||||||
|
from modules.class_generic_load import *
|
||||||
|
from modules.class_load_container import *
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from modules.visualize import *
|
from modules.visualize import *
|
||||||
@ -16,8 +18,9 @@ import random
|
|||||||
import os
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
prediction_hours = 48
|
prediction_hours = 48
|
||||||
date = (datetime.now().date() + timedelta(days=1)).strftime("%Y-%m-%d")
|
date = (datetime.now().date() + timedelta(hours = prediction_hours)).strftime("%Y-%m-%d")
|
||||||
date_now = datetime.now().strftime("%Y-%m-%d")
|
date_now = datetime.now().strftime("%Y-%m-%d")
|
||||||
|
|
||||||
akku_size = 30000 # Wh
|
akku_size = 30000 # Wh
|
||||||
@ -25,16 +28,28 @@ year_energy = 2000*1000 #Wh
|
|||||||
einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, 7/(1000.0*100.0)) # € / Wh
|
einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, 7/(1000.0*100.0)) # € / Wh
|
||||||
|
|
||||||
max_heizleistung = 1000 # 5 kW Heizleistung
|
max_heizleistung = 1000 # 5 kW Heizleistung
|
||||||
wp = Waermepumpe(max_heizleistung)
|
wp = Waermepumpe(max_heizleistung,prediction_hours)
|
||||||
|
|
||||||
akku = PVAkku(akku_size,prediction_hours)
|
akku = PVAkku(akku_size,prediction_hours)
|
||||||
discharge_array = np.full(prediction_hours,1)
|
discharge_array = np.full(prediction_hours,1)
|
||||||
|
|
||||||
|
|
||||||
|
#Gesamtlast
|
||||||
|
#############
|
||||||
|
gesamtlast = Gesamtlast()
|
||||||
|
|
||||||
|
|
||||||
# Load Forecast
|
# Load Forecast
|
||||||
###############
|
###############
|
||||||
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
|
||||||
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
|
#leistung_haushalt = lf.get_daily_stats(date)[0,...] # Datum anpassen
|
||||||
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
|
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
|
||||||
|
gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
|
||||||
|
|
||||||
|
# Generic Load
|
||||||
|
##############
|
||||||
|
# zusatzlast1 = generic_load()
|
||||||
|
# zusatzlast1.setze_last(24+12, 0.5, 2000) # Startet um 1 Uhr, dauert 0.5 Stunden, mit 2 kW
|
||||||
|
|
||||||
|
|
||||||
# PV Forecast
|
# PV Forecast
|
||||||
@ -42,10 +57,10 @@ leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
|
|||||||
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
|
||||||
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
|
||||||
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
|
||||||
|
|
||||||
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
|
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
# Strompreise
|
# Strompreise
|
||||||
###############
|
###############
|
||||||
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
|
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json') # Pfad zur JSON-Datei anpassen
|
||||||
@ -54,18 +69,25 @@ price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.n
|
|||||||
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
|
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
|
||||||
|
|
||||||
# WP
|
# WP
|
||||||
|
##############
|
||||||
leistung_wp = wp.simulate_24h(temperature_forecast)
|
leistung_wp = wp.simulate_24h(temperature_forecast)
|
||||||
|
gesamtlast.hinzufuegen("Heatpump", leistung_wp)
|
||||||
|
|
||||||
# LOAD
|
# print(gesamtlast.gesamtlast_berechnen())
|
||||||
load = leistung_haushalt + leistung_wp
|
# sys.exit()
|
||||||
|
|
||||||
|
|
||||||
# EMS / Stromzähler Bilanz
|
# EMS / Stromzähler Bilanz
|
||||||
ems = EnergieManagementSystem(akku, load, pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
|
ems = EnergieManagementSystem(akku, gesamtlast.gesamtlast_berechnen(), pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
|
||||||
|
|
||||||
|
|
||||||
o = ems.simuliere_ab_jetzt()
|
o = ems.simuliere_ab_jetzt()
|
||||||
pprint(o)
|
pprint(o)
|
||||||
pprint(o["Gesamtbilanz_Euro"])
|
pprint(o["Gesamtbilanz_Euro"])
|
||||||
#sys.exit()
|
|
||||||
|
visualisiere_ergebnisse(gesamtlast.gesamtlast_berechnen(),leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o)
|
||||||
|
|
||||||
|
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
# Optimierung
|
# Optimierung
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user