mirror of
				https://github.com/Akkudoktor-EOS/EOS.git
				synced 2025-11-04 00:36:21 +00:00 
			
		
		
		
	Last Container zum Vereinheitlichen und Bugfixes
This commit is contained in:
		@@ -1,6 +1,6 @@
 | 
				
			|||||||
from datetime import datetime
 | 
					from datetime import datetime
 | 
				
			||||||
from pprint import pprint
 | 
					from pprint import pprint
 | 
				
			||||||
 | 
					from modules.class_generic_load import *
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class EnergieManagementSystem:
 | 
					class EnergieManagementSystem:
 | 
				
			||||||
@@ -10,11 +10,7 @@ class EnergieManagementSystem:
 | 
				
			|||||||
        self.pv_prognose_wh = pv_prognose_wh
 | 
					        self.pv_prognose_wh = pv_prognose_wh
 | 
				
			||||||
        self.strompreis_cent_pro_wh = strompreis_cent_pro_wh  # Strompreis in Cent pro Wh
 | 
					        self.strompreis_cent_pro_wh = strompreis_cent_pro_wh  # Strompreis in Cent pro Wh
 | 
				
			||||||
        self.einspeiseverguetung_cent_pro_wh = einspeiseverguetung_cent_pro_wh  # Einspeisevergütung in Cent pro Wh
 | 
					        self.einspeiseverguetung_cent_pro_wh = einspeiseverguetung_cent_pro_wh  # Einspeisevergütung in Cent pro Wh
 | 
				
			||||||
        
 | 
					   
 | 
				
			||||||
        # print("\n\nLastprognose:",self.lastkurve_wh.shape)
 | 
					 | 
				
			||||||
        # print("PV Prognose:",self.pv_prognose_wh.shape)
 | 
					 | 
				
			||||||
        # print("Preis Prognose:",self.strompreis_cent_pro_wh.shape)
 | 
					 | 
				
			||||||
        # sys.exit()
 | 
					 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    def set_akku_discharge_hours(self, ds):
 | 
					    def set_akku_discharge_hours(self, ds):
 | 
				
			||||||
        self.akku.set_discharge_per_hour(ds)
 | 
					        self.akku.set_discharge_per_hour(ds)
 | 
				
			||||||
@@ -42,6 +38,9 @@ class EnergieManagementSystem:
 | 
				
			|||||||
        einnahmen_euro_pro_stunde = []
 | 
					        einnahmen_euro_pro_stunde = []
 | 
				
			||||||
        akku_soc_pro_stunde = []
 | 
					        akku_soc_pro_stunde = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        #print(gesamtlast_pro_stunde)
 | 
				
			||||||
 | 
					        #sys.exit()
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        ende = min( len(self.lastkurve_wh),len(self.pv_prognose_wh), len(self.strompreis_cent_pro_wh))
 | 
					        ende = min( len(self.lastkurve_wh),len(self.pv_prognose_wh), len(self.strompreis_cent_pro_wh))
 | 
				
			||||||
        #print(ende)
 | 
					        #print(ende)
 | 
				
			||||||
        # Berechnet das Ende basierend auf der Länge der Lastkurve
 | 
					        # Berechnet das Ende basierend auf der Länge der Lastkurve
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -5,8 +5,9 @@ from pprint import pprint
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# Lade die .npz-Datei beim Start der Anwendung
 | 
					# Lade die .npz-Datei beim Start der Anwendung
 | 
				
			||||||
class Waermepumpe:
 | 
					class Waermepumpe:
 | 
				
			||||||
    def __init__(self, max_heizleistung):
 | 
					    def __init__(self, max_heizleistung, prediction_hours):
 | 
				
			||||||
        self.max_heizleistung = max_heizleistung
 | 
					        self.max_heizleistung = max_heizleistung
 | 
				
			||||||
 | 
					        self.prediction_hours = prediction_hours
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def cop_berechnen(self, aussentemperatur):
 | 
					    def cop_berechnen(self, aussentemperatur):
 | 
				
			||||||
        cop = 3.0 + (aussentemperatur-0) * 0.1
 | 
					        cop = 3.0 + (aussentemperatur-0) * 0.1
 | 
				
			||||||
@@ -26,6 +27,11 @@ class Waermepumpe:
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
    def simulate_24h(self, temperaturen):
 | 
					    def simulate_24h(self, temperaturen):
 | 
				
			||||||
        leistungsdaten = []
 | 
					        leistungsdaten = []
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Überprüfen, ob das Temperaturarray die richtige Größe hat
 | 
				
			||||||
 | 
					        if len(temperaturen) != self.prediction_hours:
 | 
				
			||||||
 | 
					            raise ValueError("Das Temperaturarray muss genau "+str(self.prediction_hours)+" Einträge enthalten, einen für jede Stunde des Tages.")
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        for temp in temperaturen:
 | 
					        for temp in temperaturen:
 | 
				
			||||||
            elektrische_leistung = self.elektrische_leistung_berechnen(temp)
 | 
					            elektrische_leistung = self.elektrische_leistung_berechnen(temp)
 | 
				
			||||||
            leistungsdaten.append(elektrische_leistung)
 | 
					            leistungsdaten.append(elektrische_leistung)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -79,7 +79,7 @@ class LoadForecast:
 | 
				
			|||||||
            data = np.load(self.filepath)
 | 
					            data = np.load(self.filepath)
 | 
				
			||||||
            self.data = np.array(list(zip(data["yearly_profiles"],data["yearly_profiles_std"])))
 | 
					            self.data = np.array(list(zip(data["yearly_profiles"],data["yearly_profiles_std"])))
 | 
				
			||||||
            self.data_year_energy = self.data * self.year_energy
 | 
					            self.data_year_energy = self.data * self.year_energy
 | 
				
			||||||
            pprint(self.data_year_energy)
 | 
					            #pprint(self.data_year_energy)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_price_data(self):
 | 
					    def get_price_data(self):
 | 
				
			||||||
        # load_profiles_exp_l = load_profiles_exp*year_energy
 | 
					        # load_profiles_exp_l = load_profiles_exp*year_energy
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										35
									
								
								modules/class_load_container.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										35
									
								
								modules/class_load_container.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,35 @@
 | 
				
			|||||||
 | 
					import json
 | 
				
			||||||
 | 
					from datetime import datetime, timedelta, timezone
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from pprint import pprint
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class Gesamtlast:
 | 
				
			||||||
 | 
					    def __init__(self):
 | 
				
			||||||
 | 
					        self.lasten = {}  # Enthält Namen und Lasten-Arrays für verschiedene Quellen
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def hinzufuegen(self, name, last_array):
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Fügt ein Array von Lasten für eine bestimmte Quelle hinzu.
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        :param name: Name der Lastquelle (z.B. "Haushalt", "Wärmepumpe")
 | 
				
			||||||
 | 
					        :param last_array: Array von Lasten, wobei jeder Eintrag einer Stunde entspricht
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        self.lasten[name] = last_array
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    def gesamtlast_berechnen(self):
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        Berechnet die gesamte Last für jede Stunde und gibt ein Array der Gesamtlasten zurück.
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        :return: Array der Gesamtlasten, wobei jeder Eintrag einer Stunde entspricht
 | 
				
			||||||
 | 
					        """
 | 
				
			||||||
 | 
					        if not self.lasten:
 | 
				
			||||||
 | 
					            return []
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        # Annahme: Alle Lasten-Arrays haben die gleiche Länge
 | 
				
			||||||
 | 
					        stunden = len(next(iter(self.lasten.values())))
 | 
				
			||||||
 | 
					        gesamtlast_array = [0] * stunden
 | 
				
			||||||
 | 
					        for last_array in self.lasten.values():
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					            gesamtlast_array = [gesamtlast + stundenlast for gesamtlast, stundenlast in zip(gesamtlast_array, last_array)]
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
 | 
					        return np.array(gesamtlast_array)
 | 
				
			||||||
@@ -31,16 +31,23 @@ class ForecastData:
 | 
				
			|||||||
        return self.temperature
 | 
					        return self.temperature
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class PVForecast:
 | 
					class PVForecast:
 | 
				
			||||||
    def __init__(self, filepath=None, url=None, cache_dir='cache'):
 | 
					    def __init__(self, filepath=None, url=None, cache_dir='cache', prediction_hours = 48):
 | 
				
			||||||
        self.meta = {}
 | 
					        self.meta = {}
 | 
				
			||||||
        self.forecast_data = []
 | 
					        self.forecast_data = []
 | 
				
			||||||
        self.cache_dir = cache_dir
 | 
					        self.cache_dir = cache_dir
 | 
				
			||||||
 | 
					        self.prediction_hours = prediction_hours
 | 
				
			||||||
 | 
					        
 | 
				
			||||||
        if not os.path.exists(self.cache_dir):
 | 
					        if not os.path.exists(self.cache_dir):
 | 
				
			||||||
            os.makedirs(self.cache_dir)
 | 
					            os.makedirs(self.cache_dir)
 | 
				
			||||||
        if filepath:
 | 
					        if filepath:
 | 
				
			||||||
            self.load_data_from_file(filepath)
 | 
					            self.load_data_from_file(filepath)
 | 
				
			||||||
        elif url:
 | 
					        elif url:
 | 
				
			||||||
            self.load_data_with_caching(url)
 | 
					            self.load_data_with_caching(url)
 | 
				
			||||||
 | 
					            
 | 
				
			||||||
 | 
					        # Überprüfung nach dem Laden der Daten
 | 
				
			||||||
 | 
					        if len(self.forecast_data) < self.prediction_hours:
 | 
				
			||||||
 | 
					            raise ValueError(f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt.")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def process_data(self, data):
 | 
					    def process_data(self, data):
 | 
				
			||||||
@@ -72,7 +79,9 @@ class PVForecast:
 | 
				
			|||||||
            self.load_data_from_url(url)
 | 
					            self.load_data_from_url(url)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def load_data_with_caching(self, url):
 | 
					    def load_data_with_caching(self, url):
 | 
				
			||||||
        cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url))
 | 
					        date =  datetime.now().strftime("%Y-%m-%d")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url,date))
 | 
				
			||||||
        if os.path.exists(cache_file):
 | 
					        if os.path.exists(cache_file):
 | 
				
			||||||
            with open(cache_file, 'r') as file:
 | 
					            with open(cache_file, 'r') as file:
 | 
				
			||||||
                data = json.load(file)
 | 
					                data = json.load(file)
 | 
				
			||||||
@@ -89,11 +98,11 @@ class PVForecast:
 | 
				
			|||||||
                return
 | 
					                return
 | 
				
			||||||
        self.process_data(data)
 | 
					        self.process_data(data)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def generate_cache_filename(self, url):
 | 
					    def generate_cache_filename(self, url,date):
 | 
				
			||||||
        # Erzeugt einen SHA-256 Hash der URL als Dateinamen
 | 
					        # Erzeugt einen SHA-256 Hash der URL als Dateinamen
 | 
				
			||||||
        hash_object = hashlib.sha256(url.encode())
 | 
					        cache_key = hashlib.sha256(f"{url}{date}".encode('utf-8')).hexdigest()
 | 
				
			||||||
        hex_dig = hash_object.hexdigest()
 | 
					        #cache_path = os.path.join(self.cache_dir, cache_key)
 | 
				
			||||||
        return f"cache_{hex_dig}.json"
 | 
					        return f"cache_{cache_key}.json"
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def get_forecast_data(self):
 | 
					    def get_forecast_data(self):
 | 
				
			||||||
        return self.forecast_data
 | 
					        return self.forecast_data
 | 
				
			||||||
@@ -121,15 +130,16 @@ class PVForecast:
 | 
				
			|||||||
        start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
 | 
					        start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
 | 
				
			||||||
        end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
 | 
					        end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
 | 
				
			||||||
        date_range_forecast = []
 | 
					        date_range_forecast = []
 | 
				
			||||||
        
 | 
					
 | 
				
			||||||
        for data in self.forecast_data:
 | 
					        for data in self.forecast_data:
 | 
				
			||||||
            data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
 | 
					            data_date = datetime.strptime(data.get_date_time(), "%Y-%m-%dT%H:%M:%S.%f%z").date()
 | 
				
			||||||
 | 
					            #print(data.get_date_time())
 | 
				
			||||||
            if start_date <= data_date <= end_date:
 | 
					            if start_date <= data_date <= end_date:
 | 
				
			||||||
                date_range_forecast.append(data)
 | 
					                date_range_forecast.append(data)
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
        ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
 | 
					        ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        return ac_power_forecast
 | 
					        return np.array(ac_power_forecast)[:self.prediction_hours]
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
    def get_temperature_for_date_range(self, start_date_str, end_date_str):
 | 
					    def get_temperature_for_date_range(self, start_date_str, end_date_str):
 | 
				
			||||||
        start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
 | 
					        start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
 | 
				
			||||||
@@ -143,7 +153,7 @@ class PVForecast:
 | 
				
			|||||||
                
 | 
					                
 | 
				
			||||||
        forecast_data = date_range_forecast
 | 
					        forecast_data = date_range_forecast
 | 
				
			||||||
        temperature_forecast = [data.get_temperature() for data in forecast_data]
 | 
					        temperature_forecast = [data.get_temperature() for data in forecast_data]
 | 
				
			||||||
        return np.array(temperature_forecast)
 | 
					        return np.array(temperature_forecast)[:self.prediction_hours]
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -154,3 +164,4 @@ if __name__ == '__main__':
 | 
				
			|||||||
    forecast = PVForecast(r'..\test_data\pvprognose.json')
 | 
					    forecast = PVForecast(r'..\test_data\pvprognose.json')
 | 
				
			||||||
    for data in forecast.get_forecast_data():
 | 
					    for data in forecast.get_forecast_data():
 | 
				
			||||||
        print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())
 | 
					        print(data.get_date_time(), data.get_dc_power(), data.get_ac_power(), data.get_windspeed_10m(), data.get_temperature())
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -54,7 +54,7 @@ class HourlyElectricityPriceForecast:
 | 
				
			|||||||
        while start_date <= end_date:
 | 
					        while start_date <= end_date:
 | 
				
			||||||
            date_str = start_date.strftime("%Y-%m-%d")
 | 
					            date_str = start_date.strftime("%Y-%m-%d")
 | 
				
			||||||
            daily_prices = self.get_price_for_date(date_str)
 | 
					            daily_prices = self.get_price_for_date(date_str)
 | 
				
			||||||
            print(len(self.get_price_for_date(date_str)))
 | 
					            #print(len(self.get_price_for_date(date_str)))
 | 
				
			||||||
            if daily_prices.size > 0:
 | 
					            if daily_prices.size > 0:
 | 
				
			||||||
                price_list.extend(daily_prices)
 | 
					                price_list.extend(daily_prices)
 | 
				
			||||||
            start_date += timedelta(days=1)
 | 
					            start_date += timedelta(days=1)
 | 
				
			||||||
 
 | 
				
			|||||||
@@ -3,8 +3,11 @@ import matplotlib.pyplot as plt
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse):
 | 
					def visualisiere_ergebnisse(last,leistung_haushalt,leistung_wp, pv_forecast, strompreise, ergebnisse):
 | 
				
			||||||
    stunden = np.arange(1, len(last)+1)  # 1 bis 24 Stunden
 | 
					    
 | 
				
			||||||
 | 
					    #print(last)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    stunden = np.arange(1, len(last)+1)  # 1 bis 24 Stunden
 | 
				
			||||||
    # Last und PV-Erzeugung
 | 
					    # Last und PV-Erzeugung
 | 
				
			||||||
    plt.figure(figsize=(14, 10))
 | 
					    plt.figure(figsize=(14, 10))
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										38
									
								
								test.py
									
									
									
									
									
								
							
							
						
						
									
										38
									
								
								test.py
									
									
									
									
									
								
							@@ -7,6 +7,8 @@ from  modules.class_pv_forecast import *
 | 
				
			|||||||
from modules.class_akku import *
 | 
					from modules.class_akku import *
 | 
				
			||||||
from modules.class_strompreis import *
 | 
					from modules.class_strompreis import *
 | 
				
			||||||
from modules.class_heatpump import * 
 | 
					from modules.class_heatpump import * 
 | 
				
			||||||
 | 
					from modules.class_generic_load import *
 | 
				
			||||||
 | 
					from modules.class_load_container import * 
 | 
				
			||||||
from pprint import pprint
 | 
					from pprint import pprint
 | 
				
			||||||
import matplotlib.pyplot as plt
 | 
					import matplotlib.pyplot as plt
 | 
				
			||||||
from modules.visualize import *
 | 
					from modules.visualize import *
 | 
				
			||||||
@@ -16,8 +18,9 @@ import random
 | 
				
			|||||||
import os
 | 
					import os
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
prediction_hours = 48
 | 
					prediction_hours = 48
 | 
				
			||||||
date = (datetime.now().date() + timedelta(days=1)).strftime("%Y-%m-%d")
 | 
					date = (datetime.now().date() + timedelta(hours = prediction_hours)).strftime("%Y-%m-%d")
 | 
				
			||||||
date_now = datetime.now().strftime("%Y-%m-%d")
 | 
					date_now = datetime.now().strftime("%Y-%m-%d")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
akku_size = 30000 # Wh
 | 
					akku_size = 30000 # Wh
 | 
				
			||||||
@@ -25,16 +28,28 @@ year_energy = 2000*1000 #Wh
 | 
				
			|||||||
einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, 7/(1000.0*100.0)) # € / Wh
 | 
					einspeiseverguetung_cent_pro_wh = np.full(prediction_hours, 7/(1000.0*100.0)) # € / Wh
 | 
				
			||||||
 | 
					
 | 
				
			||||||
max_heizleistung = 1000  # 5 kW Heizleistung
 | 
					max_heizleistung = 1000  # 5 kW Heizleistung
 | 
				
			||||||
wp = Waermepumpe(max_heizleistung)
 | 
					wp = Waermepumpe(max_heizleistung,prediction_hours)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
akku = PVAkku(akku_size,prediction_hours)
 | 
					akku = PVAkku(akku_size,prediction_hours)
 | 
				
			||||||
discharge_array = np.full(prediction_hours,1)
 | 
					discharge_array = np.full(prediction_hours,1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					#Gesamtlast
 | 
				
			||||||
 | 
					#############
 | 
				
			||||||
 | 
					gesamtlast = Gesamtlast()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Load Forecast
 | 
					# Load Forecast
 | 
				
			||||||
###############
 | 
					###############
 | 
				
			||||||
lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
 | 
					lf = LoadForecast(filepath=r'load_profiles.npz', year_energy=year_energy)
 | 
				
			||||||
#leistung_haushalt = lf.get_daily_stats(date)[0,...]  # Datum anpassen
 | 
					#leistung_haushalt = lf.get_daily_stats(date)[0,...]  # Datum anpassen
 | 
				
			||||||
leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
 | 
					leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
 | 
				
			||||||
 | 
					gesamtlast.hinzufuegen("Haushalt", leistung_haushalt)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Generic Load
 | 
				
			||||||
 | 
					##############
 | 
				
			||||||
 | 
					# zusatzlast1 = generic_load()
 | 
				
			||||||
 | 
					# zusatzlast1.setze_last(24+12, 0.5, 2000)  # Startet um 1 Uhr, dauert 0.5 Stunden, mit 2 kW
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# PV Forecast
 | 
					# PV Forecast
 | 
				
			||||||
@@ -42,10 +57,10 @@ leistung_haushalt = lf.get_stats_for_date_range(date_now,date)[0,...].flatten()
 | 
				
			|||||||
#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
 | 
					#PVforecast = PVForecast(filepath=os.path.join(r'test_data', r'pvprognose.json'))
 | 
				
			||||||
PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
 | 
					PVforecast = PVForecast(url="https://api.akkudoktor.net/forecast?lat=50.8588&lon=7.3747&power=5400&azimuth=-10&tilt=7&powerInvertor=2500&horizont=20,40,30,30&power=4800&azimuth=-90&tilt=7&powerInvertor=2500&horizont=20,40,45,50&power=1480&azimuth=-90&tilt=70&powerInvertor=1120&horizont=60,45,30,70&power=1600&azimuth=5&tilt=60&powerInvertor=1200&horizont=60,45,30,70&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m")
 | 
				
			||||||
pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
 | 
					pv_forecast = PVforecast.get_pv_forecast_for_date_range(date_now,date) #get_forecast_for_date(date)
 | 
				
			||||||
 | 
					 | 
				
			||||||
temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
 | 
					temperature_forecast = PVforecast.get_temperature_for_date_range(date_now,date)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Strompreise
 | 
					# Strompreise
 | 
				
			||||||
###############
 | 
					###############
 | 
				
			||||||
filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json')  # Pfad zur JSON-Datei anpassen
 | 
					filepath = os.path.join (r'test_data', r'strompreise_akkudokAPI.json')  # Pfad zur JSON-Datei anpassen
 | 
				
			||||||
@@ -54,18 +69,25 @@ price_forecast = HourlyElectricityPriceForecast(source="https://api.akkudoktor.n
 | 
				
			|||||||
specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
 | 
					specific_date_prices = price_forecast.get_price_for_daterange(date_now,date)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# WP
 | 
					# WP
 | 
				
			||||||
 | 
					##############
 | 
				
			||||||
leistung_wp = wp.simulate_24h(temperature_forecast)
 | 
					leistung_wp = wp.simulate_24h(temperature_forecast)
 | 
				
			||||||
 | 
					gesamtlast.hinzufuegen("Heatpump", leistung_wp)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# LOAD
 | 
					# print(gesamtlast.gesamtlast_berechnen())
 | 
				
			||||||
load = leistung_haushalt + leistung_wp
 | 
					# sys.exit()
 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
# EMS / Stromzähler Bilanz
 | 
					# EMS / Stromzähler Bilanz
 | 
				
			||||||
ems = EnergieManagementSystem(akku, load, pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
 | 
					ems = EnergieManagementSystem(akku, gesamtlast.gesamtlast_berechnen(), pv_forecast, specific_date_prices, einspeiseverguetung_cent_pro_wh)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
o = ems.simuliere_ab_jetzt()
 | 
					o = ems.simuliere_ab_jetzt()
 | 
				
			||||||
pprint(o)
 | 
					pprint(o)
 | 
				
			||||||
pprint(o["Gesamtbilanz_Euro"])
 | 
					pprint(o["Gesamtbilanz_Euro"])
 | 
				
			||||||
#sys.exit()
 | 
					
 | 
				
			||||||
 | 
					visualisiere_ergebnisse(gesamtlast.gesamtlast_berechnen(),leistung_haushalt,leistung_wp, pv_forecast, specific_date_prices, o)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					sys.exit()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Optimierung
 | 
					# Optimierung
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user