mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-09-20 10:41:14 +00:00
Improve Configuration and Prediction Usability (#220)
* Update utilities in utils submodule. * Add base configuration modules. * Add server base configuration modules. * Add devices base configuration modules. * Add optimization base configuration modules. * Add utils base configuration modules. * Add prediction abstract and base classes plus tests. * Add PV forecast to prediction submodule. The PV forecast modules are adapted from the class_pvforecast module and replace it. * Add weather forecast to prediction submodule. The modules provide classes and methods to retrieve, manage, and process weather forecast data from various sources. Includes are structured representations of weather data and utilities for fetching forecasts for specific locations and time ranges. BrightSky and ClearOutside are currently supported. * Add electricity price forecast to prediction submodule. * Adapt fastapi server to base config and add fasthtml server. * Add ems to core submodule. * Adapt genetic to config. * Adapt visualize to config. * Adapt common test fixtures to config. * Add load forecast to prediction submodule. * Add core abstract and base classes. * Adapt single test optimization to config. * Adapt devices to config. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
275
src/akkudoktoreos/core/coreabc.py
Normal file
275
src/akkudoktoreos/core/coreabc.py
Normal file
@@ -0,0 +1,275 @@
|
||||
"""Abstract and base classes for EOS core.
|
||||
|
||||
This module provides foundational classes for handling configuration and prediction functionality
|
||||
in EOS. It includes base classes that provide convenient access to global
|
||||
configuration and prediction instances through properties.
|
||||
|
||||
Classes:
|
||||
- ConfigMixin: Mixin class for managing and accessing global configuration.
|
||||
- PredictionMixin: Mixin class for managing and accessing global prediction data.
|
||||
- SingletonMixin: Mixin class to create singletons.
|
||||
"""
|
||||
|
||||
import threading
|
||||
from typing import Any, ClassVar, Dict, Optional, Type
|
||||
|
||||
from pendulum import DateTime
|
||||
from pydantic import computed_field
|
||||
|
||||
from akkudoktoreos.utils.logutil import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
config_eos: Any = None
|
||||
prediction_eos: Any = None
|
||||
devices_eos: Any = None
|
||||
ems_eos: Any = None
|
||||
|
||||
|
||||
class ConfigMixin:
|
||||
"""Mixin class for managing EOS configuration data.
|
||||
|
||||
This class serves as a foundational component for EOS-related classes requiring access
|
||||
to the global EOS configuration. It provides a `config` property that dynamically retrieves
|
||||
the configuration instance, ensuring up-to-date access to configuration settings.
|
||||
|
||||
Usage:
|
||||
Subclass this base class to gain access to the `config` attribute, which retrieves the
|
||||
global configuration instance lazily to avoid import-time circular dependencies.
|
||||
|
||||
Attributes:
|
||||
config (ConfigEOS): Property to access the global EOS configuration.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class MyEOSClass(ConfigMixin):
|
||||
def my_method(self):
|
||||
if self.config.myconfigval:
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def config(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS onfiguration data.
|
||||
|
||||
Returns:
|
||||
ConfigEOS: The configuration.
|
||||
"""
|
||||
# avoid circular dependency at import time
|
||||
global config_eos
|
||||
if config_eos is None:
|
||||
from akkudoktoreos.config.config import get_config
|
||||
|
||||
config_eos = get_config()
|
||||
|
||||
return config_eos
|
||||
|
||||
|
||||
class PredictionMixin:
|
||||
"""Mixin class for managing EOS prediction data.
|
||||
|
||||
This class serves as a foundational component for EOS-related classes requiring access
|
||||
to global prediction data. It provides a `prediction` property that dynamically retrieves
|
||||
the prediction instance, ensuring up-to-date access to prediction results.
|
||||
|
||||
Usage:
|
||||
Subclass this base class to gain access to the `prediction` attribute, which retrieves the
|
||||
global prediction instance lazily to avoid import-time circular dependencies.
|
||||
|
||||
Attributes:
|
||||
prediction (Prediction): Property to access the global EOS prediction data.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class MyOptimizationClass(PredictionMixin):
|
||||
def analyze_myprediction(self):
|
||||
prediction_data = self.prediction.mypredictionresult
|
||||
# Perform analysis
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def prediction(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS prediction data.
|
||||
|
||||
Returns:
|
||||
Prediction: The prediction.
|
||||
"""
|
||||
# avoid circular dependency at import time
|
||||
global prediction_eos
|
||||
if prediction_eos is None:
|
||||
from akkudoktoreos.prediction.prediction import get_prediction
|
||||
|
||||
prediction_eos = get_prediction()
|
||||
|
||||
return prediction_eos
|
||||
|
||||
|
||||
class DevicesMixin:
|
||||
"""Mixin class for managing EOS devices simulation data.
|
||||
|
||||
This class serves as a foundational component for EOS-related classes requiring access
|
||||
to global devices simulation data. It provides a `devices` property that dynamically retrieves
|
||||
the devices instance, ensuring up-to-date access to devices simulation results.
|
||||
|
||||
Usage:
|
||||
Subclass this base class to gain access to the `devices` attribute, which retrieves the
|
||||
global devices instance lazily to avoid import-time circular dependencies.
|
||||
|
||||
Attributes:
|
||||
devices (Devices): Property to access the global EOS devices simulation data.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class MyOptimizationClass(DevicesMixin):
|
||||
def analyze_mydevicesimulation(self):
|
||||
device_simulation_data = self.devices.mydevicesresult
|
||||
# Perform analysis
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def devices(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS devices simulation data.
|
||||
|
||||
Returns:
|
||||
Devices: The devices simulation.
|
||||
"""
|
||||
# avoid circular dependency at import time
|
||||
global devices_eos
|
||||
if devices_eos is None:
|
||||
from akkudoktoreos.devices.devices import get_devices
|
||||
|
||||
devices_eos = get_devices()
|
||||
|
||||
return devices_eos
|
||||
|
||||
|
||||
class EnergyManagementSystemMixin:
|
||||
"""Mixin class for managing EOS energy management system.
|
||||
|
||||
This class serves as a foundational component for EOS-related classes requiring access
|
||||
to global energy management system. It provides a `ems` property that dynamically retrieves
|
||||
the energy management system instance, ensuring up-to-date access to energy management system
|
||||
control.
|
||||
|
||||
Usage:
|
||||
Subclass this base class to gain access to the `ems` attribute, which retrieves the
|
||||
global EnergyManagementSystem instance lazily to avoid import-time circular dependencies.
|
||||
|
||||
Attributes:
|
||||
ems (EnergyManagementSystem): Property to access the global EOS energy management system.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class MyOptimizationClass(EnergyManagementSystemMixin):
|
||||
def analyze_myprediction(self):
|
||||
ems_data = self.ems.the_ems_method()
|
||||
# Perform analysis
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def ems(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS energy management system.
|
||||
|
||||
Returns:
|
||||
EnergyManagementSystem: The energy management system.
|
||||
"""
|
||||
# avoid circular dependency at import time
|
||||
global ems_eos
|
||||
if ems_eos is None:
|
||||
from akkudoktoreos.core.ems import get_ems
|
||||
|
||||
ems_eos = get_ems()
|
||||
|
||||
return ems_eos
|
||||
|
||||
|
||||
class StartMixin(EnergyManagementSystemMixin):
|
||||
"""A mixin to manage the start datetime for energy management.
|
||||
|
||||
Provides property:
|
||||
- `start_datetime`: The starting datetime of the current or latest energy management.
|
||||
"""
|
||||
|
||||
# Computed field for start_datetime
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def start_datetime(self) -> Optional[DateTime]:
|
||||
"""Returns the start datetime of the current or latest energy management.
|
||||
|
||||
Returns:
|
||||
DateTime: The starting datetime of the current or latest energy management, or None.
|
||||
"""
|
||||
return self.ems.start_datetime
|
||||
|
||||
|
||||
class SingletonMixin:
|
||||
"""A thread-safe singleton mixin class.
|
||||
|
||||
Ensures that only one instance of the derived class is created, even when accessed from multiple
|
||||
threads. This mixin is intended to be combined with other classes, such as Pydantic models,
|
||||
to make them singletons.
|
||||
|
||||
Attributes:
|
||||
_instances (Dict[Type, Any]): A dictionary holding instances of each singleton class.
|
||||
_lock (threading.Lock): A lock to synchronize access to singleton instance creation.
|
||||
|
||||
Usage:
|
||||
- Inherit from `SingletonMixin` alongside other classes to make them singletons.
|
||||
- Avoid using `__init__` to reinitialize the singleton instance after it has been created.
|
||||
|
||||
Example:
|
||||
class MySingletonModel(SingletonMixin, PydanticBaseModel):
|
||||
name: str
|
||||
|
||||
instance1 = MySingletonModel(name="Instance 1")
|
||||
instance2 = MySingletonModel(name="Instance 2")
|
||||
|
||||
assert instance1 is instance2 # True
|
||||
print(instance1.name) # Output: "Instance 1"
|
||||
"""
|
||||
|
||||
_lock: ClassVar[threading.Lock] = threading.Lock()
|
||||
_instances: ClassVar[Dict[Type, Any]] = {}
|
||||
|
||||
def __new__(cls: Type["SingletonMixin"], *args: Any, **kwargs: Any) -> "SingletonMixin":
|
||||
"""Creates or returns the singleton instance of the class.
|
||||
|
||||
Ensures thread-safe instance creation by locking during the first instantiation.
|
||||
|
||||
Args:
|
||||
*args: Positional arguments for instance creation (ignored if instance exists).
|
||||
**kwargs: Keyword arguments for instance creation (ignored if instance exists).
|
||||
|
||||
Returns:
|
||||
SingletonMixin: The singleton instance of the derived class.
|
||||
"""
|
||||
if cls not in cls._instances:
|
||||
with cls._lock:
|
||||
if cls not in cls._instances:
|
||||
instance = super().__new__(cls)
|
||||
cls._instances[cls] = instance
|
||||
return cls._instances[cls]
|
||||
|
||||
@classmethod
|
||||
def reset_instance(cls) -> None:
|
||||
"""Resets the singleton instance, forcing it to be recreated on next access."""
|
||||
with cls._lock:
|
||||
if cls in cls._instances:
|
||||
del cls._instances[cls]
|
||||
logger.debug(f"{cls.__name__} singleton instance has been reset.")
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Initializes the singleton instance if it has not been initialized previously.
|
||||
|
||||
Further calls to `__init__` are ignored for the singleton instance.
|
||||
|
||||
Args:
|
||||
*args: Positional arguments for initialization.
|
||||
**kwargs: Keyword arguments for initialization.
|
||||
"""
|
||||
if not hasattr(self, "_initialized"):
|
||||
super().__init__(*args, **kwargs)
|
||||
self._initialized = True
|
1307
src/akkudoktoreos/core/dataabc.py
Normal file
1307
src/akkudoktoreos/core/dataabc.py
Normal file
File diff suppressed because it is too large
Load Diff
424
src/akkudoktoreos/core/ems.py
Normal file
424
src/akkudoktoreos/core/ems.py
Normal file
@@ -0,0 +1,424 @@
|
||||
from typing import Any, ClassVar, Dict, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
from numpydantic import NDArray, Shape
|
||||
from pendulum import DateTime
|
||||
from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.devices.battery import PVAkku
|
||||
from akkudoktoreos.devices.generic import HomeAppliance
|
||||
from akkudoktoreos.devices.inverter import Wechselrichter
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime
|
||||
from akkudoktoreos.utils.logutil import get_logger
|
||||
from akkudoktoreos.utils.utils import NumpyEncoder
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
class EnergieManagementSystemParameters(PydanticBaseModel):
|
||||
pv_prognose_wh: list[float] = Field(
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
|
||||
)
|
||||
strompreis_euro_pro_wh: list[float] = Field(
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals."
|
||||
)
|
||||
einspeiseverguetung_euro_pro_wh: list[float] | float = Field(
|
||||
description="A float or array of floats representing the feed-in compensation in euros per watt-hour."
|
||||
)
|
||||
preis_euro_pro_wh_akku: float = Field(
|
||||
description="A float representing the cost of battery energy per watt-hour."
|
||||
)
|
||||
gesamtlast: list[float] = Field(
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals."
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_list_length(self) -> Self:
|
||||
pv_prognose_length = len(self.pv_prognose_wh)
|
||||
if (
|
||||
pv_prognose_length != len(self.strompreis_euro_pro_wh)
|
||||
or pv_prognose_length != len(self.gesamtlast)
|
||||
or (
|
||||
isinstance(self.einspeiseverguetung_euro_pro_wh, list)
|
||||
and pv_prognose_length != len(self.einspeiseverguetung_euro_pro_wh)
|
||||
)
|
||||
):
|
||||
raise ValueError("Input lists have different lengths")
|
||||
return self
|
||||
|
||||
|
||||
class SimulationResult(PydanticBaseModel):
|
||||
"""This object contains the results of the simulation and provides insights into various parameters over the entire forecast period."""
|
||||
|
||||
Last_Wh_pro_Stunde: list[Optional[float]] = Field(description="TBD")
|
||||
EAuto_SoC_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The state of charge of the EV for each hour."
|
||||
)
|
||||
Einnahmen_Euro_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The revenue from grid feed-in or other sources in euros per hour."
|
||||
)
|
||||
Gesamt_Verluste: float = Field(
|
||||
description="The total losses in watt-hours over the entire period."
|
||||
)
|
||||
Gesamtbilanz_Euro: float = Field(
|
||||
description="The total balance of revenues minus costs in euros."
|
||||
)
|
||||
Gesamteinnahmen_Euro: float = Field(description="The total revenues in euros.")
|
||||
Gesamtkosten_Euro: float = Field(description="The total costs in euros.")
|
||||
Home_appliance_wh_per_hour: list[Optional[float]] = Field(
|
||||
description="The energy consumption of a household appliance in watt-hours per hour."
|
||||
)
|
||||
Kosten_Euro_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The costs in euros per hour."
|
||||
)
|
||||
Netzbezug_Wh_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The grid energy drawn in watt-hours per hour."
|
||||
)
|
||||
Netzeinspeisung_Wh_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The energy fed into the grid in watt-hours per hour."
|
||||
)
|
||||
Verluste_Pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The losses in watt-hours per hour."
|
||||
)
|
||||
akku_soc_pro_stunde: list[Optional[float]] = Field(
|
||||
description="The state of charge of the battery (not the EV) in percentage per hour."
|
||||
)
|
||||
|
||||
@field_validator(
|
||||
"Last_Wh_pro_Stunde",
|
||||
"Netzeinspeisung_Wh_pro_Stunde",
|
||||
"akku_soc_pro_stunde",
|
||||
"Netzbezug_Wh_pro_Stunde",
|
||||
"Kosten_Euro_pro_Stunde",
|
||||
"Einnahmen_Euro_pro_Stunde",
|
||||
"EAuto_SoC_pro_Stunde",
|
||||
"Verluste_Pro_Stunde",
|
||||
"Home_appliance_wh_per_hour",
|
||||
mode="before",
|
||||
)
|
||||
def convert_numpy(cls, field: Any) -> Any:
|
||||
return NumpyEncoder.convert_numpy(field)[0]
|
||||
|
||||
|
||||
class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
|
||||
# Start datetime.
|
||||
_start_datetime: ClassVar[Optional[DateTime]] = None
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def start_datetime(self) -> DateTime:
|
||||
"""The starting datetime of the current or latest energy management."""
|
||||
if EnergieManagementSystem._start_datetime is None:
|
||||
EnergieManagementSystem.set_start_datetime()
|
||||
return EnergieManagementSystem._start_datetime
|
||||
|
||||
@classmethod
|
||||
def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime:
|
||||
if start_datetime is None:
|
||||
start_datetime = to_datetime()
|
||||
cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0)
|
||||
return cls._start_datetime
|
||||
|
||||
# -------------------------
|
||||
# TODO: Take from prediction
|
||||
# -------------------------
|
||||
|
||||
gesamtlast: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals.",
|
||||
)
|
||||
pv_prognose_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals.",
|
||||
)
|
||||
strompreis_euro_pro_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals.",
|
||||
)
|
||||
einspeiseverguetung_euro_pro_wh_arr: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the feed-in compensation in euros per watt-hour.",
|
||||
)
|
||||
|
||||
# -------------------------
|
||||
# TODO: Move to devices
|
||||
# -------------------------
|
||||
|
||||
akku: Optional[PVAkku] = Field(default=None, description="TBD.")
|
||||
eauto: Optional[PVAkku] = Field(default=None, description="TBD.")
|
||||
home_appliance: Optional[HomeAppliance] = Field(default=None, description="TBD.")
|
||||
wechselrichter: Optional[Wechselrichter] = Field(default=None, description="TBD.")
|
||||
|
||||
# -------------------------
|
||||
# TODO: Move to devices
|
||||
# -------------------------
|
||||
|
||||
ac_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
|
||||
def set_parameters(
|
||||
self,
|
||||
parameters: EnergieManagementSystemParameters,
|
||||
eauto: Optional[PVAkku] = None,
|
||||
home_appliance: Optional[HomeAppliance] = None,
|
||||
wechselrichter: Optional[Wechselrichter] = None,
|
||||
) -> None:
|
||||
self.gesamtlast = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prognose_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.strompreis_euro_pro_wh = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.einspeiseverguetung_euro_pro_wh_arr = (
|
||||
parameters.einspeiseverguetung_euro_pro_wh
|
||||
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
||||
else np.full(len(self.gesamtlast), parameters.einspeiseverguetung_euro_pro_wh, float)
|
||||
)
|
||||
if wechselrichter is not None:
|
||||
self.akku = wechselrichter.akku
|
||||
else:
|
||||
self.akku = None
|
||||
self.eauto = eauto
|
||||
self.home_appliance = home_appliance
|
||||
self.wechselrichter = wechselrichter
|
||||
self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.akku is not None:
|
||||
self.akku.set_discharge_per_hour(ds)
|
||||
|
||||
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ac_charge_hours = ds
|
||||
|
||||
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.dc_charge_hours = ds
|
||||
|
||||
def set_ev_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ev_charge_hours = ds
|
||||
|
||||
def set_home_appliance_start(self, ds: int, global_start_hour: int = 0) -> None:
|
||||
if self.home_appliance is not None:
|
||||
self.home_appliance.set_starting_time(ds, global_start_hour=global_start_hour)
|
||||
|
||||
def reset(self) -> None:
|
||||
if self.eauto:
|
||||
self.eauto.reset()
|
||||
if self.akku:
|
||||
self.akku.reset()
|
||||
|
||||
def run(
|
||||
self,
|
||||
start_hour: Optional[int] = None,
|
||||
force_enable: Optional[bool] = False,
|
||||
force_update: Optional[bool] = False,
|
||||
) -> None:
|
||||
"""Run energy management.
|
||||
|
||||
Sets `start_datetime` to current hour, updates the configuration and the prediction, and
|
||||
starts simulation at current hour.
|
||||
|
||||
Args:
|
||||
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
|
||||
to now.
|
||||
force_enable (bool, optional): If True, forces to update even if disabled. This
|
||||
is mostly relevant to prediction providers.
|
||||
force_update (bool, optional): If True, forces to update the data even if still cached.
|
||||
"""
|
||||
self.set_start_hour(start_hour=start_hour)
|
||||
self.config.update()
|
||||
|
||||
# Check for run definitions
|
||||
if self.start_datetime is None:
|
||||
error_msg = "Start datetime unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.prediction_hours is None:
|
||||
error_msg = "Prediction hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.optimisation_hours is None:
|
||||
error_msg = "Optimisation hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
self.prediction.update_data(force_enable=force_enable, force_update=force_update)
|
||||
# TODO: Create optimisation problem that calls into devices.update_data() for simulations.
|
||||
|
||||
def set_start_hour(self, start_hour: Optional[int] = None) -> None:
|
||||
"""Sets start datetime to given hour.
|
||||
|
||||
Args:
|
||||
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
|
||||
to now.
|
||||
"""
|
||||
if start_hour is None:
|
||||
self.set_start_datetime()
|
||||
else:
|
||||
start_datetime = to_datetime().set(hour=start_hour, minute=0, second=0, microsecond=0)
|
||||
self.set_start_datetime(start_datetime)
|
||||
|
||||
def simuliere_ab_jetzt(self) -> dict[str, Any]:
|
||||
jetzt = to_datetime().now()
|
||||
start_stunde = jetzt.hour
|
||||
return self.simuliere(start_stunde)
|
||||
|
||||
def simuliere(self, start_stunde: int) -> dict[str, Any]:
|
||||
"""hour.
|
||||
|
||||
akku_soc_pro_stunde begin of the hour, initial hour state!
|
||||
last_wh_pro_stunde integral of last hour (end state)
|
||||
"""
|
||||
# Check for simulation integrity
|
||||
if (
|
||||
self.gesamtlast is None
|
||||
or self.pv_prognose_wh is None
|
||||
or self.strompreis_euro_pro_wh is None
|
||||
or self.ev_charge_hours is None
|
||||
or self.ac_charge_hours is None
|
||||
or self.dc_charge_hours is None
|
||||
or self.einspeiseverguetung_euro_pro_wh_arr is None
|
||||
):
|
||||
error_msg = (
|
||||
f"Mandatory data missing - "
|
||||
f"Load Curve: {self.gesamtlast}, "
|
||||
f"PV Forecast: {self.pv_prognose_wh}, "
|
||||
f"Electricity Price: {self.strompreis_euro_pro_wh}, "
|
||||
f"EV Charge Hours: {self.ev_charge_hours}, "
|
||||
f"AC Charge Hours: {self.ac_charge_hours}, "
|
||||
f"DC Charge Hours: {self.dc_charge_hours}, "
|
||||
f"Feed-in tariff: {self.einspeiseverguetung_euro_pro_wh_arr}"
|
||||
)
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
lastkurve_wh = self.gesamtlast
|
||||
|
||||
if not (len(lastkurve_wh) == len(self.pv_prognose_wh) == len(self.strompreis_euro_pro_wh)):
|
||||
error_msg = f"Array sizes do not match: Load Curve = {len(lastkurve_wh)}, PV Forecast = {len(self.pv_prognose_wh)}, Electricity Price = {len(self.strompreis_euro_pro_wh)}"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
# Optimized total hours calculation
|
||||
ende = len(lastkurve_wh)
|
||||
total_hours = ende - start_stunde
|
||||
|
||||
# Pre-allocate arrays for the results, optimized for speed
|
||||
last_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
netzeinspeisung_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
netzbezug_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
kosten_euro_pro_stunde = np.full((total_hours), np.nan)
|
||||
einnahmen_euro_pro_stunde = np.full((total_hours), np.nan)
|
||||
akku_soc_pro_stunde = np.full((total_hours), np.nan)
|
||||
eauto_soc_pro_stunde = np.full((total_hours), np.nan)
|
||||
verluste_wh_pro_stunde = np.full((total_hours), np.nan)
|
||||
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
|
||||
|
||||
# Set initial state
|
||||
if self.akku:
|
||||
akku_soc_pro_stunde[0] = self.akku.ladezustand_in_prozent()
|
||||
if self.eauto:
|
||||
eauto_soc_pro_stunde[0] = self.eauto.ladezustand_in_prozent()
|
||||
|
||||
for stunde in range(start_stunde, ende):
|
||||
stunde_since_now = stunde - start_stunde
|
||||
|
||||
# Accumulate loads and PV generation
|
||||
verbrauch = self.gesamtlast[stunde]
|
||||
verluste_wh_pro_stunde[stunde_since_now] = 0.0
|
||||
|
||||
# Home appliances
|
||||
if self.home_appliance:
|
||||
ha_load = self.home_appliance.get_load_for_hour(stunde)
|
||||
verbrauch += ha_load
|
||||
home_appliance_wh_per_hour[stunde_since_now] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if self.eauto:
|
||||
if self.ev_charge_hours[stunde] > 0:
|
||||
geladene_menge_eauto, verluste_eauto = self.eauto.energie_laden(
|
||||
None, stunde, relative_power=self.ev_charge_hours[stunde]
|
||||
)
|
||||
verbrauch += geladene_menge_eauto
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
|
||||
eauto_soc_pro_stunde[stunde_since_now] = self.eauto.ladezustand_in_prozent()
|
||||
|
||||
# Process inverter logic
|
||||
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (0.0, 0.0, 0.0, 0.0)
|
||||
if self.akku:
|
||||
self.akku.set_charge_allowed_for_hour(self.dc_charge_hours[stunde], stunde)
|
||||
if self.wechselrichter:
|
||||
erzeugung = self.pv_prognose_wh[stunde]
|
||||
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (
|
||||
self.wechselrichter.energie_verarbeiten(erzeugung, verbrauch, stunde)
|
||||
)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if self.akku and self.ac_charge_hours[stunde] > 0.0:
|
||||
self.akku.set_charge_allowed_for_hour(1, stunde)
|
||||
geladene_menge, verluste_wh = self.akku.energie_laden(
|
||||
None, stunde, relative_power=self.ac_charge_hours[stunde]
|
||||
)
|
||||
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.akku.ladezustand_in_prozent())
|
||||
verbrauch += geladene_menge
|
||||
verbrauch += verluste_wh
|
||||
netzbezug += geladene_menge
|
||||
netzbezug += verluste_wh
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
|
||||
|
||||
netzeinspeisung_wh_pro_stunde[stunde_since_now] = netzeinspeisung
|
||||
netzbezug_wh_pro_stunde[stunde_since_now] = netzbezug
|
||||
verluste_wh_pro_stunde[stunde_since_now] += verluste
|
||||
last_wh_pro_stunde[stunde_since_now] = verbrauch
|
||||
|
||||
# Financial calculations
|
||||
kosten_euro_pro_stunde[stunde_since_now] = (
|
||||
netzbezug * self.strompreis_euro_pro_wh[stunde]
|
||||
)
|
||||
einnahmen_euro_pro_stunde[stunde_since_now] = (
|
||||
netzeinspeisung * self.einspeiseverguetung_euro_pro_wh_arr[stunde]
|
||||
)
|
||||
|
||||
# Akku SOC tracking
|
||||
if self.akku:
|
||||
akku_soc_pro_stunde[stunde_since_now] = self.akku.ladezustand_in_prozent()
|
||||
else:
|
||||
akku_soc_pro_stunde[stunde_since_now] = 0.0
|
||||
|
||||
# Total cost and return
|
||||
gesamtkosten_euro = np.nansum(kosten_euro_pro_stunde) - np.nansum(einnahmen_euro_pro_stunde)
|
||||
|
||||
# Prepare output dictionary
|
||||
out: Dict[str, Union[np.ndarray, float]] = {
|
||||
"Last_Wh_pro_Stunde": last_wh_pro_stunde,
|
||||
"Netzeinspeisung_Wh_pro_Stunde": netzeinspeisung_wh_pro_stunde,
|
||||
"Netzbezug_Wh_pro_Stunde": netzbezug_wh_pro_stunde,
|
||||
"Kosten_Euro_pro_Stunde": kosten_euro_pro_stunde,
|
||||
"akku_soc_pro_stunde": akku_soc_pro_stunde,
|
||||
"Einnahmen_Euro_pro_Stunde": einnahmen_euro_pro_stunde,
|
||||
"Gesamtbilanz_Euro": gesamtkosten_euro,
|
||||
"EAuto_SoC_pro_Stunde": eauto_soc_pro_stunde,
|
||||
"Gesamteinnahmen_Euro": np.nansum(einnahmen_euro_pro_stunde),
|
||||
"Gesamtkosten_Euro": np.nansum(kosten_euro_pro_stunde),
|
||||
"Verluste_Pro_Stunde": verluste_wh_pro_stunde,
|
||||
"Gesamt_Verluste": np.nansum(verluste_wh_pro_stunde),
|
||||
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
|
||||
}
|
||||
|
||||
return out
|
||||
|
||||
|
||||
# Initialize the Energy Management System, it is a singleton.
|
||||
ems = EnergieManagementSystem()
|
||||
|
||||
|
||||
def get_ems() -> EnergieManagementSystem:
|
||||
"""Gets the EOS Energy Management System."""
|
||||
return ems
|
226
src/akkudoktoreos/core/pydantic.py
Normal file
226
src/akkudoktoreos/core/pydantic.py
Normal file
@@ -0,0 +1,226 @@
|
||||
"""Module for managing and serializing Pydantic-based models with custom support.
|
||||
|
||||
This module introduces the `PydanticBaseModel` class, which extends Pydantic’s `BaseModel` to facilitate
|
||||
custom serialization and deserialization for `pendulum.DateTime` objects. The main features include
|
||||
automatic handling of `pendulum.DateTime` fields, custom serialization to ISO 8601 format, and utility
|
||||
methods for converting model instances to and from dictionary and JSON formats.
|
||||
|
||||
Key Classes:
|
||||
- PendulumDateTime: A custom type adapter that provides serialization and deserialization
|
||||
functionality for `pendulum.DateTime` objects, converting them to ISO 8601 strings and back.
|
||||
- PydanticBaseModel: A base model class for handling prediction records or configuration data
|
||||
with automatic Pendulum DateTime handling and additional methods for JSON and dictionary
|
||||
conversion.
|
||||
|
||||
Classes:
|
||||
PendulumDateTime(TypeAdapter[pendulum.DateTime]): Type adapter for `pendulum.DateTime` fields
|
||||
with ISO 8601 serialization. Includes:
|
||||
- serialize: Converts `pendulum.DateTime` instances to ISO 8601 string.
|
||||
- deserialize: Converts ISO 8601 strings to `pendulum.DateTime` instances.
|
||||
- is_iso8601: Validates if a string matches the ISO 8601 date format.
|
||||
|
||||
PydanticBaseModel(BaseModel): Extends `pydantic.BaseModel` to handle `pendulum.DateTime` fields
|
||||
and adds convenience methods for dictionary and JSON serialization. Key methods:
|
||||
- model_dump: Dumps the model, converting `pendulum.DateTime` fields to ISO 8601.
|
||||
- model_construct: Constructs a model instance with automatic deserialization of
|
||||
`pendulum.DateTime` fields from ISO 8601.
|
||||
- to_dict: Serializes the model instance to a dictionary.
|
||||
- from_dict: Constructs a model instance from a dictionary.
|
||||
- to_json: Converts the model instance to a JSON string.
|
||||
- from_json: Creates a model instance from a JSON string.
|
||||
|
||||
Usage Example:
|
||||
# Define custom settings in a model using PydanticBaseModel
|
||||
class PredictionCommonSettings(PydanticBaseModel):
|
||||
prediction_start: pendulum.DateTime = Field(...)
|
||||
|
||||
# Serialize a model instance to a dictionary or JSON
|
||||
config = PredictionCommonSettings(prediction_start=pendulum.now())
|
||||
config_dict = config.to_dict()
|
||||
config_json = config.to_json()
|
||||
|
||||
# Deserialize from dictionary or JSON
|
||||
new_config = PredictionCommonSettings.from_dict(config_dict)
|
||||
restored_config = PredictionCommonSettings.from_json(config_json)
|
||||
|
||||
Dependencies:
|
||||
- `pendulum`: Required for handling timezone-aware datetime fields.
|
||||
- `pydantic`: Required for model and validation functionality.
|
||||
|
||||
Notes:
|
||||
- This module enables custom handling of Pendulum DateTime fields within Pydantic models,
|
||||
which is particularly useful for applications requiring consistent ISO 8601 datetime formatting
|
||||
and robust timezone-aware datetime support.
|
||||
"""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any, Type
|
||||
|
||||
import pendulum
|
||||
from pydantic import BaseModel, ConfigDict, TypeAdapter
|
||||
|
||||
|
||||
# Custom type adapter for Pendulum DateTime fields
|
||||
class PendulumDateTime(TypeAdapter[pendulum.DateTime]):
|
||||
@classmethod
|
||||
def serialize(cls, value: Any) -> str:
|
||||
"""Convert pendulum.DateTime to ISO 8601 string."""
|
||||
if isinstance(value, pendulum.DateTime):
|
||||
return value.to_iso8601_string()
|
||||
raise ValueError(f"Expected pendulum.DateTime, got {type(value)}")
|
||||
|
||||
@classmethod
|
||||
def deserialize(cls, value: Any) -> pendulum.DateTime:
|
||||
"""Convert ISO 8601 string to pendulum.DateTime."""
|
||||
if isinstance(value, str) and cls.is_iso8601(value):
|
||||
try:
|
||||
return pendulum.parse(value)
|
||||
except pendulum.parsing.exceptions.ParserError as e:
|
||||
raise ValueError(f"Invalid date format: {value}") from e
|
||||
elif isinstance(value, pendulum.DateTime):
|
||||
return value
|
||||
raise ValueError(f"Expected ISO 8601 string or pendulum.DateTime, got {type(value)}")
|
||||
|
||||
@staticmethod
|
||||
def is_iso8601(value: str) -> bool:
|
||||
"""Check if the string is a valid ISO 8601 date string."""
|
||||
iso8601_pattern = (
|
||||
r"^(\d{4}-\d{2}-\d{2}[T ]\d{2}:\d{2}:\d{2}(?:\.\d{1,3})?(?:Z|[+-]\d{2}:\d{2})?)$"
|
||||
)
|
||||
return bool(re.match(iso8601_pattern, value))
|
||||
|
||||
|
||||
class PydanticBaseModel(BaseModel):
|
||||
"""Base model class with automatic serialization and deserialization of `pendulum.DateTime` fields.
|
||||
|
||||
This model serializes pendulum.DateTime objects to ISO 8601 strings and
|
||||
deserializes ISO 8601 strings to pendulum.DateTime objects.
|
||||
"""
|
||||
|
||||
# Enable custom serialization globally in config
|
||||
model_config = ConfigDict(
|
||||
arbitrary_types_allowed=True,
|
||||
use_enum_values=True,
|
||||
validate_assignment=True,
|
||||
)
|
||||
|
||||
# Override Pydantic’s serialization for all DateTime fields
|
||||
def model_dump(self, *args: Any, **kwargs: Any) -> dict:
|
||||
"""Custom dump method to handle serialization for DateTime fields."""
|
||||
result = super().model_dump(*args, **kwargs)
|
||||
for key, value in result.items():
|
||||
if isinstance(value, pendulum.DateTime):
|
||||
result[key] = PendulumDateTime.serialize(value)
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def model_construct(cls, data: dict) -> "PydanticBaseModel":
|
||||
"""Custom constructor to handle deserialization for DateTime fields."""
|
||||
for key, value in data.items():
|
||||
if isinstance(value, str) and PendulumDateTime.is_iso8601(value):
|
||||
data[key] = PendulumDateTime.deserialize(value)
|
||||
return super().model_construct(data)
|
||||
|
||||
def reset_optional(self) -> "PydanticBaseModel":
|
||||
"""Resets all optional fields in the model to None.
|
||||
|
||||
Iterates through all model fields and sets any optional (non-required)
|
||||
fields to None. The modification is done in-place on the current instance.
|
||||
|
||||
Returns:
|
||||
PydanticBaseModel: The current instance with all optional fields
|
||||
reset to None.
|
||||
|
||||
Example:
|
||||
>>> settings = PydanticBaseModel(name="test", optional_field="value")
|
||||
>>> settings.reset_optional()
|
||||
>>> assert settings.optional_field is None
|
||||
"""
|
||||
for field_name, field in self.model_fields.items():
|
||||
if field.is_required is False: # Check if field is optional
|
||||
setattr(self, field_name, None)
|
||||
return self
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
"""Convert this PredictionRecord instance to a dictionary representation.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary where the keys are the field names of the PydanticBaseModel,
|
||||
and the values are the corresponding field values.
|
||||
"""
|
||||
return self.model_dump()
|
||||
|
||||
@classmethod
|
||||
def from_dict(cls: Type["PydanticBaseModel"], data: dict) -> "PydanticBaseModel":
|
||||
"""Create a PydanticBaseModel instance from a dictionary.
|
||||
|
||||
Args:
|
||||
data (dict): A dictionary containing data to initialize the PydanticBaseModel.
|
||||
Keys should match the field names defined in the model.
|
||||
|
||||
Returns:
|
||||
PydanticBaseModel: An instance of the PydanticBaseModel populated with the data.
|
||||
|
||||
Notes:
|
||||
Works with derived classes by ensuring the `cls` argument is used to instantiate the object.
|
||||
"""
|
||||
return cls.model_validate(data)
|
||||
|
||||
@classmethod
|
||||
def from_dict_with_reset(cls, data: dict | None = None) -> "PydanticBaseModel":
|
||||
"""Creates a new instance with reset optional fields, then updates from dict.
|
||||
|
||||
First creates an instance with default values, resets all optional fields
|
||||
to None, then updates the instance with the provided dictionary data if any.
|
||||
|
||||
Args:
|
||||
data (dict | None): Dictionary containing field values to initialize
|
||||
the instance with. Defaults to None.
|
||||
|
||||
Returns:
|
||||
PydanticBaseModel: A new instance with all optional fields initially
|
||||
reset to None and then updated with provided data.
|
||||
|
||||
Example:
|
||||
>>> data = {"name": "test", "optional_field": "value"}
|
||||
>>> settings = PydanticBaseModel.from_dict_with_reset(data)
|
||||
>>> # All non-specified optional fields will be None
|
||||
"""
|
||||
# Create instance with model defaults
|
||||
instance = cls()
|
||||
|
||||
# Reset all optional fields to None
|
||||
instance.reset_optional()
|
||||
|
||||
# Update with provided data if any
|
||||
if data:
|
||||
# Use model_validate to ensure proper type conversion and validation
|
||||
updated_instance = instance.model_validate({**instance.model_dump(), **data})
|
||||
return updated_instance
|
||||
|
||||
return instance
|
||||
|
||||
def to_json(self) -> str:
|
||||
"""Convert the PydanticBaseModel instance to a JSON string.
|
||||
|
||||
Returns:
|
||||
str: The JSON representation of the instance.
|
||||
"""
|
||||
return self.model_dump_json()
|
||||
|
||||
@classmethod
|
||||
def from_json(cls: Type["PydanticBaseModel"], json_str: str) -> "PydanticBaseModel":
|
||||
"""Create an instance of the PydanticBaseModel class or its subclass from a JSON string.
|
||||
|
||||
Args:
|
||||
json_str (str): JSON string to parse and convert into a PydanticBaseModel instance.
|
||||
|
||||
Returns:
|
||||
PydanticBaseModel: A new instance of the class, populated with data from the JSON string.
|
||||
|
||||
Notes:
|
||||
Works with derived classes by ensuring the `cls` argument is used to instantiate the object.
|
||||
"""
|
||||
data = json.loads(json_str)
|
||||
return cls.model_validate(data)
|
Reference in New Issue
Block a user