Improve Configuration and Prediction Usability (#220)

* Update utilities in utils submodule.
* Add base configuration modules.
* Add server base configuration modules.
* Add devices base configuration modules.
* Add optimization base configuration modules.
* Add utils base configuration modules.
* Add prediction abstract and base classes plus tests.
* Add PV forecast to prediction submodule.
   The PV forecast modules are adapted from the class_pvforecast module and
   replace it.
* Add weather forecast to prediction submodule.
   The modules provide classes and methods to retrieve, manage, and process weather forecast data
   from various sources. Includes are structured representations of weather data and utilities
   for fetching forecasts for specific locations and time ranges.
   BrightSky and ClearOutside are currently supported.
* Add electricity price forecast to prediction submodule.
* Adapt fastapi server to base config and add fasthtml server.
* Add ems to core submodule.
* Adapt genetic to config.
* Adapt visualize to config.
* Adapt common test fixtures to config.
* Add load forecast to prediction submodule.
* Add core abstract and base classes.
* Adapt single test optimization to config.
* Adapt devices to config.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2024-12-15 14:40:03 +01:00
committed by GitHub
parent a5e637ab4c
commit aa334d0b61
80 changed files with 29048 additions and 2451 deletions

View File

@@ -3,8 +3,12 @@ from typing import Any, Optional
import numpy as np
from pydantic import BaseModel, Field, field_validator
from akkudoktoreos.devices.devicesabc import DeviceBase
from akkudoktoreos.utils.logutil import get_logger
from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
def max_ladeleistung_w_field(default: Optional[float] = None) -> Optional[float]:
return Field(
@@ -83,31 +87,86 @@ class EAutoResult(BaseModel):
return NumpyEncoder.convert_numpy(field)[0]
class PVAkku:
def __init__(self, parameters: BaseAkkuParameters, hours: int = 24):
# Battery capacity in Wh
self.kapazitaet_wh = parameters.kapazitaet_wh
# Initial state of charge in Wh
self.start_soc_prozent = parameters.start_soc_prozent
self.soc_wh = (parameters.start_soc_prozent / 100) * parameters.kapazitaet_wh
self.hours = hours
class PVAkku(DeviceBase):
def __init__(
self,
parameters: Optional[BaseAkkuParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
):
# Configuration initialisation
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericBattery":
self.prefix = "battery"
elif self.provider_id == "GenericBEV":
self.prefix = "bev"
# Parameter initialisiation
self.parameters = parameters
if hours is None:
self.hours = self.total_hours
else:
self.hours = hours
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
# Battery capacity in Wh
self.kapazitaet_wh = getattr(self.config, f"{self.prefix}_capacity")
# Initial state of charge in Wh
self.start_soc_prozent = getattr(self.config, f"{self.prefix}_soc_start")
self.hours = self.total_hours
# Charge and discharge efficiency
self.lade_effizienz = getattr(self.config, f"{self.prefix}_charge_efficiency")
self.entlade_effizienz = getattr(self.config, f"{self.prefix}_discharge_efficiency")
self.max_ladeleistung_w = getattr(self.config, f"{self.prefix}_charge_power_max")
# Only assign for storage battery
if self.provider_id == "GenericBattery":
self.min_soc_prozent = getattr(self.config, f"{self.prefix}_soc_mint")
else:
self.min_soc_prozent = 0
self.max_soc_prozent = getattr(self.config, f"{self.prefix}_soc_mint")
elif self.parameters is not None:
# Setup by parameters
# Battery capacity in Wh
self.kapazitaet_wh = self.parameters.kapazitaet_wh
# Initial state of charge in Wh
self.start_soc_prozent = self.parameters.start_soc_prozent
# Charge and discharge efficiency
self.lade_effizienz = self.parameters.lade_effizienz
self.entlade_effizienz = self.parameters.entlade_effizienz
self.max_ladeleistung_w = self.parameters.max_ladeleistung_w
# Only assign for storage battery
self.min_soc_prozent = (
self.parameters.min_soc_prozent
if isinstance(self.parameters, PVAkkuParameters)
else 0
)
self.max_soc_prozent = self.parameters.max_soc_prozent
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
# init
if self.max_ladeleistung_w is None:
self.max_ladeleistung_w = self.kapazitaet_wh
self.discharge_array = np.full(self.hours, 1)
self.charge_array = np.full(self.hours, 1)
# Charge and discharge efficiency
self.lade_effizienz = parameters.lade_effizienz
self.entlade_effizienz = parameters.entlade_effizienz
self.max_ladeleistung_w = (
parameters.max_ladeleistung_w if parameters.max_ladeleistung_w else self.kapazitaet_wh
)
# Only assign for storage battery
self.min_soc_prozent = (
parameters.min_soc_prozent if isinstance(parameters, PVAkkuParameters) else 0
)
self.max_soc_prozent = parameters.max_soc_prozent
# Calculate min and max SoC in Wh
# Calculate start, min and max SoC in Wh
self.soc_wh = (self.start_soc_prozent / 100) * self.kapazitaet_wh
self.min_soc_wh = (self.min_soc_prozent / 100) * self.kapazitaet_wh
self.max_soc_wh = (self.max_soc_prozent / 100) * self.kapazitaet_wh
self.initialised = True
def to_dict(self) -> dict[str, Any]:
return {
"kapazitaet_wh": self.kapazitaet_wh,

View File

@@ -0,0 +1,310 @@
from typing import Any, ClassVar, Dict, Optional, Union
import numpy as np
from numpydantic import NDArray, Shape
from pydantic import Field, computed_field
from akkudoktoreos.config.configabc import SettingsBaseModel
from akkudoktoreos.core.coreabc import SingletonMixin
from akkudoktoreos.devices.battery import PVAkku
from akkudoktoreos.devices.devicesabc import DevicesBase
from akkudoktoreos.devices.generic import HomeAppliance
from akkudoktoreos.devices.inverter import Wechselrichter
from akkudoktoreos.utils.datetimeutil import to_duration
from akkudoktoreos.utils.logutil import get_logger
logger = get_logger(__name__)
class DevicesCommonSettings(SettingsBaseModel):
"""Base configuration for devices simulation settings."""
# Battery
# -------
battery_provider: Optional[str] = Field(
default=None, description="Id of Battery simulation provider."
)
battery_capacity: Optional[int] = Field(default=None, description="Battery capacity [Wh].")
battery_soc_start: Optional[int] = Field(
default=None, description="Battery initial state of charge [%]."
)
battery_soc_min: Optional[int] = Field(
default=None, description="Battery minimum state of charge [%]."
)
battery_soc_max: Optional[int] = Field(
default=None, description="Battery maximum state of charge [%]."
)
battery_charge_efficiency: Optional[float] = Field(
default=None, description="Battery charging efficiency [%]."
)
battery_discharge_efficiency: Optional[float] = Field(
default=None, description="Battery discharging efficiency [%]."
)
battery_charge_power_max: Optional[int] = Field(
default=None, description="Battery maximum charge power [W]."
)
# Battery Electric Vehicle
# ------------------------
bev_provider: Optional[str] = Field(
default=None, description="Id of Battery Electric Vehicle simulation provider."
)
bev_capacity: Optional[int] = Field(
default=None, description="Battery Electric Vehicle capacity [Wh]."
)
bev_soc_start: Optional[int] = Field(
default=None, description="Battery Electric Vehicle initial state of charge [%]."
)
bev_soc_max: Optional[int] = Field(
default=None, description="Battery Electric Vehicle maximum state of charge [%]."
)
bev_charge_efficiency: Optional[float] = Field(
default=None, description="Battery Electric Vehicle charging efficiency [%]."
)
bev_discharge_efficiency: Optional[float] = Field(
default=None, description="Battery Electric Vehicle discharging efficiency [%]."
)
bev_charge_power_max: Optional[int] = Field(
default=None, description="Battery Electric Vehicle maximum charge power [W]."
)
# Home Appliance - Dish Washer
# ----------------------------
dishwasher_provider: Optional[str] = Field(
default=None, description="Id of Dish Washer simulation provider."
)
dishwasher_consumption: Optional[int] = Field(
default=None, description="Dish Washer energy consumption [Wh]."
)
dishwasher_duration: Optional[int] = Field(
default=None, description="Dish Washer usage duration [h]."
)
# PV Inverter
# -----------
inverter_provider: Optional[str] = Field(
default=None, description="Id of PV Inverter simulation provider."
)
inverter_power_max: Optional[float] = Field(
default=None, description="Inverter maximum power [W]."
)
class Devices(SingletonMixin, DevicesBase):
# Results of the devices simulation and
# insights into various parameters over the entire forecast period.
# -----------------------------------------------------------------
last_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The load in watt-hours per hour."
)
eauto_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The state of charge of the EV for each hour."
)
einnahmen_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The revenue from grid feed-in or other sources in euros per hour.",
)
home_appliance_wh_per_hour: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The energy consumption of a household appliance in watt-hours per hour.",
)
kosten_euro_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The costs in euros per hour."
)
netzbezug_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The grid energy drawn in watt-hours per hour."
)
netzeinspeisung_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The energy fed into the grid in watt-hours per hour."
)
verluste_wh_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None, description="The losses in watt-hours per hour."
)
akku_soc_pro_stunde: Optional[NDArray[Shape["*"], float]] = Field(
default=None,
description="The state of charge of the battery (not the EV) in percentage per hour.",
)
# Computed fields
@computed_field # type: ignore[prop-decorator]
@property
def total_balance_euro(self) -> float:
"""The total balance of revenues minus costs in euros."""
return self.total_revenues_euro - self.total_costs_euro
@computed_field # type: ignore[prop-decorator]
@property
def total_revenues_euro(self) -> float:
"""The total revenues in euros."""
if self.einnahmen_euro_pro_stunde is None:
return 0
return np.nansum(self.einnahmen_euro_pro_stunde)
@computed_field # type: ignore[prop-decorator]
@property
def total_costs_euro(self) -> float:
"""The total costs in euros."""
if self.kosten_euro_pro_stunde is None:
return 0
return np.nansum(self.kosten_euro_pro_stunde)
@computed_field # type: ignore[prop-decorator]
@property
def total_losses_wh(self) -> float:
"""The total losses in watt-hours over the entire period."""
if self.verluste_wh_pro_stunde is None:
return 0
return np.nansum(self.verluste_wh_pro_stunde)
# Devices
# TODO: Make devices class a container of device simulation providers.
# Device simulations to be used are then enabled in the configuration.
akku: ClassVar[PVAkku] = PVAkku(provider_id="GenericBattery")
eauto: ClassVar[PVAkku] = PVAkku(provider_id="GenericBEV")
home_appliance: ClassVar[HomeAppliance] = HomeAppliance(provider_id="GenericDishWasher")
wechselrichter: ClassVar[Wechselrichter] = Wechselrichter(
akku=akku, provider_id="GenericInverter"
)
def update_data(self) -> None:
"""Update device simulation data."""
# Assure devices are set up
self.akku.setup()
self.eauto.setup()
self.home_appliance.setup()
self.wechselrichter.setup()
# Pre-allocate arrays for the results, optimized for speed
self.last_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.netzeinspeisung_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.netzbezug_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.kosten_euro_pro_stunde = np.full((self.total_hours), np.nan)
self.einnahmen_euro_pro_stunde = np.full((self.total_hours), np.nan)
self.akku_soc_pro_stunde = np.full((self.total_hours), np.nan)
self.eauto_soc_pro_stunde = np.full((self.total_hours), np.nan)
self.verluste_wh_pro_stunde = np.full((self.total_hours), np.nan)
self.home_appliance_wh_per_hour = np.full((self.total_hours), np.nan)
# Set initial state
simulation_step = to_duration("1 hour")
if self.akku:
self.akku_soc_pro_stunde[0] = self.akku.ladezustand_in_prozent()
if self.eauto:
self.eauto_soc_pro_stunde[0] = self.eauto.ladezustand_in_prozent()
# Get predictions for full device simulation time range
# gesamtlast[stunde]
load_total_mean = self.prediction.key_to_array(
"load_total_mean",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# pv_prognose_wh[stunde]
pvforecast_ac_power = self.prediction.key_to_array(
"pvforecast_ac_power",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# strompreis_euro_pro_wh[stunde]
elecprice_marketprice = self.prediction.key_to_array(
"elecprice_marketprice",
start_datetime=self.start_datetime,
end_datetime=self.end_datetime,
interval=simulation_step,
)
# einspeiseverguetung_euro_pro_wh_arr[stunde]
# TODO: Create prediction for einspeiseverguetung_euro_pro_wh_arr
einspeiseverguetung_euro_pro_wh_arr = np.full((self.total_hours), 0.078)
for stunde_since_now in range(0, self.total_hours):
stunde = self.start_datetime.hour + stunde_since_now
# Accumulate loads and PV generation
verbrauch = load_total_mean[stunde_since_now]
self.verluste_wh_pro_stunde[stunde_since_now] = 0.0
# Home appliances
if self.home_appliance:
ha_load = self.home_appliance.get_load_for_hour(stunde)
verbrauch += ha_load
self.home_appliance_wh_per_hour[stunde_since_now] = ha_load
# E-Auto handling
if self.eauto:
if self.ev_charge_hours[stunde] > 0:
geladene_menge_eauto, verluste_eauto = self.eauto.energie_laden(
None, stunde, relative_power=self.ev_charge_hours[stunde]
)
verbrauch += geladene_menge_eauto
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_eauto
self.eauto_soc_pro_stunde[stunde_since_now] = self.eauto.ladezustand_in_prozent()
# Process inverter logic
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (0.0, 0.0, 0.0, 0.0)
if self.akku:
self.akku.set_charge_allowed_for_hour(self.dc_charge_hours[stunde], stunde)
if self.wechselrichter:
erzeugung = pvforecast_ac_power[stunde]
netzeinspeisung, netzbezug, verluste, eigenverbrauch = (
self.wechselrichter.energie_verarbeiten(erzeugung, verbrauch, stunde)
)
# AC PV Battery Charge
if self.akku and self.ac_charge_hours[stunde] > 0.0:
self.akku.set_charge_allowed_for_hour(1, stunde)
geladene_menge, verluste_wh = self.akku.energie_laden(
None, stunde, relative_power=self.ac_charge_hours[stunde]
)
# print(stunde, " ", geladene_menge, " ",self.ac_charge_hours[stunde]," ",self.akku.ladezustand_in_prozent())
verbrauch += geladene_menge
netzbezug += geladene_menge
self.verluste_wh_pro_stunde[stunde_since_now] += verluste_wh
self.netzeinspeisung_wh_pro_stunde[stunde_since_now] = netzeinspeisung
self.netzbezug_wh_pro_stunde[stunde_since_now] = netzbezug
self.verluste_wh_pro_stunde[stunde_since_now] += verluste
self.last_wh_pro_stunde[stunde_since_now] = verbrauch
# Financial calculations
self.kosten_euro_pro_stunde[stunde_since_now] = (
netzbezug * self.strompreis_euro_pro_wh[stunde]
)
self.einnahmen_euro_pro_stunde[stunde_since_now] = (
netzeinspeisung * self.einspeiseverguetung_euro_pro_wh_arr[stunde]
)
# Akku SOC tracking
if self.akku:
self.akku_soc_pro_stunde[stunde_since_now] = self.akku.ladezustand_in_prozent()
else:
self.akku_soc_pro_stunde[stunde_since_now] = 0.0
def report_dict(self) -> Dict[str, Any]:
"""Provides devices simulation output as a dictionary."""
out: Dict[str, Optional[Union[np.ndarray, float]]] = {
"Last_Wh_pro_Stunde": self.last_wh_pro_stunde,
"Netzeinspeisung_Wh_pro_Stunde": self.netzeinspeisung_wh_pro_stunde,
"Netzbezug_Wh_pro_Stunde": self.netzbezug_wh_pro_stunde,
"Kosten_Euro_pro_Stunde": self.kosten_euro_pro_stunde,
"akku_soc_pro_stunde": self.akku_soc_pro_stunde,
"Einnahmen_Euro_pro_Stunde": self.einnahmen_euro_pro_stunde,
"Gesamtbilanz_Euro": self.total_balance_euro,
"EAuto_SoC_pro_Stunde": self.eauto_soc_pro_stunde,
"Gesamteinnahmen_Euro": self.total_revenues_euro,
"Gesamtkosten_Euro": self.total_costs_euro,
"Verluste_Pro_Stunde": self.verluste_wh_pro_stunde,
"Gesamt_Verluste": self.total_losses_wh,
"Home_appliance_wh_per_hour": self.home_appliance_wh_per_hour,
}
return out
# Initialize the Devices simulation, it is a singleton.
devices = Devices()
def get_devices() -> Devices:
"""Gets the EOS Devices simulation."""
return devices

View File

@@ -0,0 +1,100 @@
"""Abstract and base classes for devices."""
from typing import Optional
from pendulum import DateTime
from pydantic import ConfigDict, computed_field
from akkudoktoreos.core.coreabc import (
ConfigMixin,
EnergyManagementSystemMixin,
PredictionMixin,
)
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.utils.datetimeutil import to_duration
from akkudoktoreos.utils.logutil import get_logger
logger = get_logger(__name__)
class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
"""A mixin to manage start, end datetimes for devices data.
The starting datetime for devices data generation is provided by the energy management
system. Device data cannot be computed if this value is `None`.
"""
# Computed field for end_datetime and keep_datetime
@computed_field # type: ignore[prop-decorator]
@property
def end_datetime(self) -> Optional[DateTime]:
"""Compute the end datetime based on the `start_datetime` and `prediction_hours`.
Ajusts the calculated end time if DST transitions occur within the prediction window.
Returns:
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
"""
if self.ems.start_datetime and self.config.prediction_hours:
end_datetime = self.ems.start_datetime + to_duration(
f"{self.config.prediction_hours} hours"
)
dst_change = end_datetime.offset_hours - self.ems.start_datetime.offset_hours
logger.debug(
f"Pre: {self.ems.start_datetime}..{end_datetime}: DST change: {dst_change}"
)
if dst_change < 0:
end_datetime = end_datetime + to_duration(f"{abs(int(dst_change))} hours")
elif dst_change > 0:
end_datetime = end_datetime - to_duration(f"{abs(int(dst_change))} hours")
logger.debug(
f"Pst: {self.ems.start_datetime}..{end_datetime}: DST change: {dst_change}"
)
return end_datetime
return None
@computed_field # type: ignore[prop-decorator]
@property
def total_hours(self) -> Optional[int]:
"""Compute the hours from `start_datetime` to `end_datetime`.
Returns:
Optional[pendulum.period]: The duration hours, or `None` if either datetime is unavailable.
"""
end_dt = self.end_datetime
if end_dt is None:
return None
duration = end_dt - self.ems.start_datetime
return int(duration.total_hours())
class DeviceBase(DevicesStartEndMixin, PredictionMixin):
"""Base class for device simulations.
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
`prediction`).
Note:
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
"""
# Disable validation on assignment to speed up simulation runs.
model_config = ConfigDict(
validate_assignment=False,
)
class DevicesBase(DevicesStartEndMixin, PredictionMixin, PydanticBaseModel):
"""Base class for handling device data.
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
`prediction`).
Note:
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
"""
# Disable validation on assignment to speed up simulation runs.
model_config = ConfigDict(
validate_assignment=False,
)

View File

@@ -1,6 +1,13 @@
from typing import Optional
import numpy as np
from pydantic import BaseModel, Field
from akkudoktoreos.devices.devicesabc import DeviceBase
from akkudoktoreos.utils.logutil import get_logger
logger = get_logger(__name__)
class HomeApplianceParameters(BaseModel):
consumption_wh: int = Field(
@@ -13,21 +20,57 @@ class HomeApplianceParameters(BaseModel):
)
class HomeAppliance:
def __init__(self, parameters: HomeApplianceParameters, hours: int = 24):
self.hours = hours # Total duration for which the planning is done
self.consumption_wh = (
parameters.consumption_wh
) # Total energy consumption of the device in kWh
self.duration_h = parameters.duration_h # Duration of use in hours
class HomeAppliance(DeviceBase):
def __init__(
self,
parameters: Optional[HomeApplianceParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
):
# Configuration initialisation
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericDishWasher":
self.prefix = "dishwasher"
# Parameter initialisiation
self.parameters = parameters
if hours is None:
self.hours = self.total_hours
else:
self.hours = hours
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
self.hours = self.total_hours
self.consumption_wh = getattr(self.config, f"{self.prefix}_consumption")
self.duration_h = getattr(self.config, f"{self.prefix}_duration")
elif self.parameters is not None:
# Setup by parameters
self.consumption_wh = (
self.parameters.consumption_wh
) # Total energy consumption of the device in kWh
self.duration_h = self.parameters.duration_h # Duration of use in hours
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
self.load_curve = np.zeros(self.hours) # Initialize the load curve with zeros
self.initialised = True
def set_starting_time(self, start_hour: int, global_start_hour: int = 0) -> None:
"""Sets the start time of the device and generates the corresponding load curve.
:param start_hour: The hour at which the device should start.
"""
self.reset()
self.reset_load_curve()
# Check if the duration of use is within the available time frame
if start_hour + self.duration_h > self.hours:
raise ValueError("The duration of use exceeds the available time frame.")
@@ -40,7 +83,7 @@ class HomeAppliance:
# Set the power for the duration of use in the load curve array
self.load_curve[start_hour : start_hour + self.duration_h] = power_per_hour
def reset(self) -> None:
def reset_load_curve(self) -> None:
"""Resets the load curve."""
self.load_curve = np.zeros(self.hours)

View File

@@ -1,19 +1,61 @@
from typing import Optional
from pydantic import BaseModel, Field
from akkudoktoreos.devices.battery import PVAkku
from akkudoktoreos.devices.devicesabc import DeviceBase
from akkudoktoreos.utils.logutil import get_logger
logger = get_logger(__name__)
class WechselrichterParameters(BaseModel):
max_leistung_wh: float = Field(default=10000, gt=0)
class Wechselrichter:
def __init__(self, parameters: WechselrichterParameters, akku: PVAkku):
self.max_leistung_wh = (
parameters.max_leistung_wh # Maximum power that the inverter can handle
)
class Wechselrichter(DeviceBase):
def __init__(
self,
parameters: Optional[WechselrichterParameters] = None,
akku: Optional[PVAkku] = None,
provider_id: Optional[str] = None,
):
# Configuration initialisation
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericInverter":
self.prefix = "inverter"
# Parameter initialisiation
self.parameters = parameters
if akku is None:
# For the moment raise exception
# TODO: Make akku configurable by config
error_msg = "Battery for PV inverter is mandatory."
logger.error(error_msg)
raise NotImplementedError(error_msg)
self.akku = akku # Connection to a battery object
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
self.max_leistung_wh = getattr(self.config, f"{self.prefix}_power_max")
elif self.parameters is not None:
# Setup by parameters
self.max_leistung_wh = (
self.parameters.max_leistung_wh # Maximum power that the inverter can handle
)
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
def energie_verarbeiten(
self, erzeugung: float, verbrauch: float, hour: int
) -> tuple[float, float, float, float]: