Improve Configuration and Prediction Usability (#220)

* Update utilities in utils submodule.
* Add base configuration modules.
* Add server base configuration modules.
* Add devices base configuration modules.
* Add optimization base configuration modules.
* Add utils base configuration modules.
* Add prediction abstract and base classes plus tests.
* Add PV forecast to prediction submodule.
   The PV forecast modules are adapted from the class_pvforecast module and
   replace it.
* Add weather forecast to prediction submodule.
   The modules provide classes and methods to retrieve, manage, and process weather forecast data
   from various sources. Includes are structured representations of weather data and utilities
   for fetching forecasts for specific locations and time ranges.
   BrightSky and ClearOutside are currently supported.
* Add electricity price forecast to prediction submodule.
* Adapt fastapi server to base config and add fasthtml server.
* Add ems to core submodule.
* Adapt genetic to config.
* Adapt visualize to config.
* Adapt common test fixtures to config.
* Add load forecast to prediction submodule.
* Add core abstract and base classes.
* Adapt single test optimization to config.
* Adapt devices to config.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2024-12-15 14:40:03 +01:00
committed by GitHub
parent a5e637ab4c
commit aa334d0b61
80 changed files with 29048 additions and 2451 deletions

View File

@@ -3,8 +3,12 @@ from typing import Any, Optional
import numpy as np
from pydantic import BaseModel, Field, field_validator
from akkudoktoreos.devices.devicesabc import DeviceBase
from akkudoktoreos.utils.logutil import get_logger
from akkudoktoreos.utils.utils import NumpyEncoder
logger = get_logger(__name__)
def max_ladeleistung_w_field(default: Optional[float] = None) -> Optional[float]:
return Field(
@@ -83,31 +87,86 @@ class EAutoResult(BaseModel):
return NumpyEncoder.convert_numpy(field)[0]
class PVAkku:
def __init__(self, parameters: BaseAkkuParameters, hours: int = 24):
# Battery capacity in Wh
self.kapazitaet_wh = parameters.kapazitaet_wh
# Initial state of charge in Wh
self.start_soc_prozent = parameters.start_soc_prozent
self.soc_wh = (parameters.start_soc_prozent / 100) * parameters.kapazitaet_wh
self.hours = hours
class PVAkku(DeviceBase):
def __init__(
self,
parameters: Optional[BaseAkkuParameters] = None,
hours: Optional[int] = 24,
provider_id: Optional[str] = None,
):
# Configuration initialisation
self.provider_id = provider_id
self.prefix = "<invalid>"
if self.provider_id == "GenericBattery":
self.prefix = "battery"
elif self.provider_id == "GenericBEV":
self.prefix = "bev"
# Parameter initialisiation
self.parameters = parameters
if hours is None:
self.hours = self.total_hours
else:
self.hours = hours
self.initialised = False
# Run setup if parameters are given, otherwise setup() has to be called later when the config is initialised.
if self.parameters is not None:
self.setup()
def setup(self) -> None:
if self.initialised:
return
if self.provider_id is not None:
# Setup by configuration
# Battery capacity in Wh
self.kapazitaet_wh = getattr(self.config, f"{self.prefix}_capacity")
# Initial state of charge in Wh
self.start_soc_prozent = getattr(self.config, f"{self.prefix}_soc_start")
self.hours = self.total_hours
# Charge and discharge efficiency
self.lade_effizienz = getattr(self.config, f"{self.prefix}_charge_efficiency")
self.entlade_effizienz = getattr(self.config, f"{self.prefix}_discharge_efficiency")
self.max_ladeleistung_w = getattr(self.config, f"{self.prefix}_charge_power_max")
# Only assign for storage battery
if self.provider_id == "GenericBattery":
self.min_soc_prozent = getattr(self.config, f"{self.prefix}_soc_mint")
else:
self.min_soc_prozent = 0
self.max_soc_prozent = getattr(self.config, f"{self.prefix}_soc_mint")
elif self.parameters is not None:
# Setup by parameters
# Battery capacity in Wh
self.kapazitaet_wh = self.parameters.kapazitaet_wh
# Initial state of charge in Wh
self.start_soc_prozent = self.parameters.start_soc_prozent
# Charge and discharge efficiency
self.lade_effizienz = self.parameters.lade_effizienz
self.entlade_effizienz = self.parameters.entlade_effizienz
self.max_ladeleistung_w = self.parameters.max_ladeleistung_w
# Only assign for storage battery
self.min_soc_prozent = (
self.parameters.min_soc_prozent
if isinstance(self.parameters, PVAkkuParameters)
else 0
)
self.max_soc_prozent = self.parameters.max_soc_prozent
else:
error_msg = "Parameters and provider ID missing. Can't instantiate."
logger.error(error_msg)
raise ValueError(error_msg)
# init
if self.max_ladeleistung_w is None:
self.max_ladeleistung_w = self.kapazitaet_wh
self.discharge_array = np.full(self.hours, 1)
self.charge_array = np.full(self.hours, 1)
# Charge and discharge efficiency
self.lade_effizienz = parameters.lade_effizienz
self.entlade_effizienz = parameters.entlade_effizienz
self.max_ladeleistung_w = (
parameters.max_ladeleistung_w if parameters.max_ladeleistung_w else self.kapazitaet_wh
)
# Only assign for storage battery
self.min_soc_prozent = (
parameters.min_soc_prozent if isinstance(parameters, PVAkkuParameters) else 0
)
self.max_soc_prozent = parameters.max_soc_prozent
# Calculate min and max SoC in Wh
# Calculate start, min and max SoC in Wh
self.soc_wh = (self.start_soc_prozent / 100) * self.kapazitaet_wh
self.min_soc_wh = (self.min_soc_prozent / 100) * self.kapazitaet_wh
self.max_soc_wh = (self.max_soc_prozent / 100) * self.kapazitaet_wh
self.initialised = True
def to_dict(self) -> dict[str, Any]:
return {
"kapazitaet_wh": self.kapazitaet_wh,