mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-09-23 03:51:14 +00:00
Improve Configuration and Prediction Usability (#220)
* Update utilities in utils submodule. * Add base configuration modules. * Add server base configuration modules. * Add devices base configuration modules. * Add optimization base configuration modules. * Add utils base configuration modules. * Add prediction abstract and base classes plus tests. * Add PV forecast to prediction submodule. The PV forecast modules are adapted from the class_pvforecast module and replace it. * Add weather forecast to prediction submodule. The modules provide classes and methods to retrieve, manage, and process weather forecast data from various sources. Includes are structured representations of weather data and utilities for fetching forecasts for specific locations and time ranges. BrightSky and ClearOutside are currently supported. * Add electricity price forecast to prediction submodule. * Adapt fastapi server to base config and add fasthtml server. * Add ems to core submodule. * Adapt genetic to config. * Adapt visualize to config. * Adapt common test fixtures to config. * Add load forecast to prediction submodule. * Add core abstract and base classes. * Adapt single test optimization to config. * Adapt devices to config. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
@@ -6,7 +6,12 @@ from deap import algorithms, base, creator, tools
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
from typing_extensions import Self
|
||||
|
||||
from akkudoktoreos.config import AppConfig
|
||||
from akkudoktoreos.core.coreabc import (
|
||||
ConfigMixin,
|
||||
DevicesMixin,
|
||||
EnergyManagementSystemMixin,
|
||||
)
|
||||
from akkudoktoreos.core.ems import EnergieManagementSystemParameters, SimulationResult
|
||||
from akkudoktoreos.devices.battery import (
|
||||
EAutoParameters,
|
||||
EAutoResult,
|
||||
@@ -15,11 +20,6 @@ from akkudoktoreos.devices.battery import (
|
||||
)
|
||||
from akkudoktoreos.devices.generic import HomeAppliance, HomeApplianceParameters
|
||||
from akkudoktoreos.devices.inverter import Wechselrichter, WechselrichterParameters
|
||||
from akkudoktoreos.prediction.ems import (
|
||||
EnergieManagementSystem,
|
||||
EnergieManagementSystemParameters,
|
||||
SimulationResult,
|
||||
)
|
||||
from akkudoktoreos.utils.utils import NumpyEncoder
|
||||
from akkudoktoreos.visualize import visualisiere_ergebnisse
|
||||
|
||||
@@ -97,20 +97,16 @@ class OptimizeResponse(BaseModel):
|
||||
return field
|
||||
|
||||
|
||||
class optimization_problem:
|
||||
class optimization_problem(ConfigMixin, DevicesMixin, EnergyManagementSystemMixin):
|
||||
def __init__(
|
||||
self,
|
||||
config: AppConfig,
|
||||
verbose: bool = False,
|
||||
fixed_seed: Optional[int] = None,
|
||||
):
|
||||
"""Initialize the optimization problem with the required parameters."""
|
||||
self._config = config
|
||||
self.prediction_hours = config.eos.prediction_hours
|
||||
self.strafe = config.eos.penalty
|
||||
self.opti_param: dict[str, Any] = {}
|
||||
self.fixed_eauto_hours = config.eos.prediction_hours - config.eos.optimization_hours
|
||||
self.possible_charge_values = config.eos.available_charging_rates_in_percentage
|
||||
self.fixed_eauto_hours = self.config.prediction_hours - self.config.optimization_hours
|
||||
self.possible_charge_values = self.config.optimization_ev_available_charge_rates_percent
|
||||
self.verbose = verbose
|
||||
self.fix_seed = fixed_seed
|
||||
self.optimize_ev = True
|
||||
@@ -121,7 +117,7 @@ class optimization_problem:
|
||||
random.seed(fixed_seed)
|
||||
|
||||
def decode_charge_discharge(
|
||||
self, discharge_hours_bin: list[int]
|
||||
self, discharge_hours_bin: list[float]
|
||||
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""Decode the input array `discharge_hours_bin` into three separate arrays for AC charging, DC charging, and discharge.
|
||||
|
||||
@@ -182,7 +178,7 @@ class optimization_problem:
|
||||
"""
|
||||
# Step 1: Mutate the charge/discharge states (idle, discharge, AC charge, DC charge)
|
||||
# Extract the relevant part of the individual for prediction hours, which represents the charge/discharge behavior.
|
||||
charge_discharge_part = individual[: self.prediction_hours]
|
||||
charge_discharge_part = individual[: self.config.prediction_hours]
|
||||
|
||||
# Apply the mutation to the charge/discharge part
|
||||
(charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part)
|
||||
@@ -200,23 +196,27 @@ class optimization_problem:
|
||||
# applying additional constraints or penalties, or keeping track of charging limits.
|
||||
|
||||
# Reassign the mutated values back to the individual
|
||||
individual[: self.prediction_hours] = charge_discharge_mutated
|
||||
individual[: self.config.prediction_hours] = charge_discharge_mutated
|
||||
|
||||
# Step 2: Mutate EV charging schedule if enabled
|
||||
if self.optimize_ev:
|
||||
# Extract the relevant part for EV charging schedule
|
||||
ev_charge_part = individual[self.prediction_hours : self.prediction_hours * 2]
|
||||
ev_charge_part = individual[
|
||||
self.config.prediction_hours : self.config.prediction_hours * 2
|
||||
]
|
||||
|
||||
# Apply mutation on the EV charging schedule
|
||||
(ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part)
|
||||
|
||||
# Ensure the EV does not charge during fixed hours (set those hours to 0)
|
||||
ev_charge_part_mutated[self.prediction_hours - self.fixed_eauto_hours :] = [
|
||||
ev_charge_part_mutated[self.config.prediction_hours - self.fixed_eauto_hours :] = [
|
||||
0
|
||||
] * self.fixed_eauto_hours
|
||||
|
||||
# Reassign the mutated EV charging part back to the individual
|
||||
individual[self.prediction_hours : self.prediction_hours * 2] = ev_charge_part_mutated
|
||||
individual[self.config.prediction_hours : self.config.prediction_hours * 2] = (
|
||||
ev_charge_part_mutated
|
||||
)
|
||||
|
||||
# Step 3: Mutate appliance start times if household appliances are part of the optimization
|
||||
if self.opti_param["home_appliance"] > 0:
|
||||
@@ -235,13 +235,13 @@ class optimization_problem:
|
||||
def create_individual(self) -> list[int]:
|
||||
# Start with discharge states for the individual
|
||||
individual_components = [
|
||||
self.toolbox.attr_discharge_state() for _ in range(self.prediction_hours)
|
||||
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction_hours)
|
||||
]
|
||||
|
||||
# Add EV charge index values if optimize_ev is True
|
||||
if self.optimize_ev:
|
||||
individual_components += [
|
||||
self.toolbox.attr_ev_charge_index() for _ in range(self.prediction_hours)
|
||||
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction_hours)
|
||||
]
|
||||
|
||||
# Add the start time of the household appliance if it's being optimized
|
||||
@@ -251,8 +251,8 @@ class optimization_problem:
|
||||
return creator.Individual(individual_components)
|
||||
|
||||
def split_individual(
|
||||
self, individual: list[int]
|
||||
) -> tuple[list[int], Optional[list[int]], Optional[int]]:
|
||||
self, individual: list[float]
|
||||
) -> tuple[list[float], Optional[list[float]], Optional[int]]:
|
||||
"""Split the individual solution into its components.
|
||||
|
||||
Components:
|
||||
@@ -260,9 +260,9 @@ class optimization_problem:
|
||||
2. Electric vehicle charge hours (float),
|
||||
3. Dishwasher start time (integer if applicable).
|
||||
"""
|
||||
discharge_hours_bin = individual[: self.prediction_hours]
|
||||
discharge_hours_bin = individual[: self.config.prediction_hours]
|
||||
eautocharge_hours_index = (
|
||||
individual[self.prediction_hours : self.prediction_hours * 2]
|
||||
individual[self.config.prediction_hours : self.config.prediction_hours * 2]
|
||||
if self.optimize_ev
|
||||
else None
|
||||
)
|
||||
@@ -299,7 +299,7 @@ class optimization_problem:
|
||||
"attr_ev_charge_index",
|
||||
random.randint,
|
||||
0,
|
||||
len(self._config.eos.available_charging_rates_in_percentage) - 1,
|
||||
len(self.config.optimization_ev_available_charge_rates_percent) - 1,
|
||||
)
|
||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||
|
||||
@@ -325,7 +325,7 @@ class optimization_problem:
|
||||
"mutate_ev_charge_index",
|
||||
tools.mutUniformInt,
|
||||
low=0,
|
||||
up=len(self._config.eos.available_charging_rates_in_percentage) - 1,
|
||||
up=len(self.config.optimization_ev_available_charge_rates_percent) - 1,
|
||||
indpb=0.2,
|
||||
)
|
||||
# - Start hour mutation for household devices
|
||||
@@ -336,49 +336,51 @@ class optimization_problem:
|
||||
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
def evaluate_inner(
|
||||
self, individual: list[int], ems: EnergieManagementSystem, start_hour: int
|
||||
) -> dict[str, Any]:
|
||||
def evaluate_inner(self, individual: list[float]) -> dict[str, Any]:
|
||||
"""Simulates the energy management system (EMS) using the provided individual solution.
|
||||
|
||||
This is an internal function.
|
||||
"""
|
||||
ems.reset()
|
||||
self.ems.reset()
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
|
||||
individual
|
||||
)
|
||||
if washingstart_int is not None:
|
||||
ems.set_home_appliance_start(washingstart_int, global_start_hour=start_hour)
|
||||
if self.opti_param.get("home_appliance", 0) > 0:
|
||||
self.ems.set_home_appliance_start(
|
||||
washingstart_int, global_start_hour=self.ems.start_datetime.hour
|
||||
)
|
||||
|
||||
ac, dc, discharge = self.decode_charge_discharge(discharge_hours_bin)
|
||||
|
||||
ems.set_akku_discharge_hours(discharge)
|
||||
self.ems.set_akku_discharge_hours(discharge)
|
||||
# Set DC charge hours only if DC optimization is enabled
|
||||
if self.optimize_dc_charge:
|
||||
ems.set_akku_dc_charge_hours(dc)
|
||||
ems.set_akku_ac_charge_hours(ac)
|
||||
self.ems.set_akku_dc_charge_hours(dc)
|
||||
self.ems.set_akku_ac_charge_hours(ac)
|
||||
|
||||
if eautocharge_hours_index is not None:
|
||||
eautocharge_hours_float = [
|
||||
self._config.eos.available_charging_rates_in_percentage[i]
|
||||
for i in eautocharge_hours_index
|
||||
]
|
||||
ems.set_ev_charge_hours(np.array(eautocharge_hours_float))
|
||||
eautocharge_hours_float = np.array(
|
||||
[
|
||||
self.config.optimization_ev_available_charge_rates_percent[i]
|
||||
for i in eautocharge_hours_index
|
||||
],
|
||||
float,
|
||||
)
|
||||
self.ems.set_ev_charge_hours(eautocharge_hours_float)
|
||||
else:
|
||||
ems.set_ev_charge_hours(np.full(self.prediction_hours, 0))
|
||||
return ems.simuliere(start_hour)
|
||||
self.ems.set_ev_charge_hours(np.full(self.config.prediction_hours, 0.0))
|
||||
return self.ems.simuliere(self.ems.start_datetime.hour)
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
individual: list[int],
|
||||
ems: EnergieManagementSystem,
|
||||
individual: list[float],
|
||||
parameters: OptimizationParameters,
|
||||
start_hour: int,
|
||||
worst_case: bool,
|
||||
) -> Tuple[float]:
|
||||
"""Evaluate the fitness of an individual solution based on the simulation results."""
|
||||
try:
|
||||
o = self.evaluate_inner(individual, ems, start_hour)
|
||||
o = self.evaluate_inner(individual)
|
||||
except Exception as e:
|
||||
return (100000.0,) # Return a high penalty in case of an exception
|
||||
|
||||
@@ -388,26 +390,28 @@ class optimization_problem:
|
||||
|
||||
# Small Penalty for not discharging
|
||||
gesamtbilanz += sum(
|
||||
0.01 for i in range(self.prediction_hours) if discharge_hours_bin[i] == 0.0
|
||||
0.01 for i in range(self.config.prediction_hours) if discharge_hours_bin[i] == 0.0
|
||||
)
|
||||
|
||||
# Penalty for not meeting the minimum SOC (State of Charge) requirement
|
||||
# if parameters.eauto_min_soc_prozent - ems.eauto.ladezustand_in_prozent() <= 0.0 and self.optimize_ev:
|
||||
# gesamtbilanz += sum(
|
||||
# self.strafe for ladeleistung in eautocharge_hours_index if ladeleistung != 0.0
|
||||
# self.config.optimization_penalty for ladeleistung in eautocharge_hours_float if ladeleistung != 0.0
|
||||
# )
|
||||
|
||||
individual.extra_data = ( # type: ignore[attr-defined]
|
||||
o["Gesamtbilanz_Euro"],
|
||||
o["Gesamt_Verluste"],
|
||||
parameters.eauto.min_soc_prozent - ems.eauto.ladezustand_in_prozent()
|
||||
if parameters.eauto and ems.eauto
|
||||
parameters.eauto.min_soc_prozent - self.ems.eauto.ladezustand_in_prozent()
|
||||
if parameters.eauto and self.ems.eauto
|
||||
else 0,
|
||||
)
|
||||
|
||||
# Adjust total balance with battery value and penalties for unmet SOC
|
||||
|
||||
restwert_akku = ems.akku.aktueller_energieinhalt() * parameters.ems.preis_euro_pro_wh_akku
|
||||
restwert_akku = (
|
||||
self.ems.akku.aktueller_energieinhalt() * parameters.ems.preis_euro_pro_wh_akku
|
||||
)
|
||||
# print(ems.akku.aktueller_energieinhalt()," * ", parameters.ems.preis_euro_pro_wh_akku , " ", restwert_akku, " ", gesamtbilanz)
|
||||
gesamtbilanz += -restwert_akku
|
||||
# print(gesamtbilanz)
|
||||
@@ -415,11 +419,11 @@ class optimization_problem:
|
||||
gesamtbilanz += max(
|
||||
0,
|
||||
(
|
||||
parameters.eauto.min_soc_prozent - ems.eauto.ladezustand_in_prozent()
|
||||
if parameters.eauto and ems.eauto
|
||||
parameters.eauto.min_soc_prozent - self.ems.eauto.ladezustand_in_prozent()
|
||||
if parameters.eauto and self.ems.eauto
|
||||
else 0
|
||||
)
|
||||
* self.strafe,
|
||||
* self.config.optimization_penalty,
|
||||
)
|
||||
|
||||
return (gesamtbilanz,)
|
||||
@@ -468,29 +472,32 @@ class optimization_problem:
|
||||
def optimierung_ems(
|
||||
self,
|
||||
parameters: OptimizationParameters,
|
||||
start_hour: int,
|
||||
start_hour: Optional[int] = None,
|
||||
worst_case: bool = False,
|
||||
ngen: int = 600,
|
||||
) -> OptimizeResponse:
|
||||
"""Perform EMS (Energy Management System) optimization and visualize results."""
|
||||
if start_hour is None:
|
||||
start_hour = self.ems.start_datetime.hour
|
||||
|
||||
einspeiseverguetung_euro_pro_wh = np.full(
|
||||
self.prediction_hours, parameters.ems.einspeiseverguetung_euro_pro_wh
|
||||
self.config.prediction_hours, parameters.ems.einspeiseverguetung_euro_pro_wh
|
||||
)
|
||||
|
||||
# Initialize PV and EV batteries
|
||||
akku = PVAkku(
|
||||
parameters.pv_akku,
|
||||
hours=self.prediction_hours,
|
||||
hours=self.config.prediction_hours,
|
||||
)
|
||||
akku.set_charge_per_hour(np.full(self.prediction_hours, 1))
|
||||
akku.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
|
||||
|
||||
eauto: Optional[PVAkku] = None
|
||||
if parameters.eauto:
|
||||
eauto = PVAkku(
|
||||
parameters.eauto,
|
||||
hours=self.prediction_hours,
|
||||
hours=self.config.prediction_hours,
|
||||
)
|
||||
eauto.set_charge_per_hour(np.full(self.prediction_hours, 1))
|
||||
eauto.set_charge_per_hour(np.full(self.config.prediction_hours, 1))
|
||||
self.optimize_ev = (
|
||||
parameters.eauto.min_soc_prozent - parameters.eauto.start_soc_prozent >= 0
|
||||
)
|
||||
@@ -501,7 +508,7 @@ class optimization_problem:
|
||||
dishwasher = (
|
||||
HomeAppliance(
|
||||
parameters=parameters.dishwasher,
|
||||
hours=self.prediction_hours,
|
||||
hours=self.config.prediction_hours,
|
||||
)
|
||||
if parameters.dishwasher is not None
|
||||
else None
|
||||
@@ -509,30 +516,30 @@ class optimization_problem:
|
||||
|
||||
# Initialize the inverter and energy management system
|
||||
wr = Wechselrichter(parameters.wechselrichter, akku)
|
||||
ems = EnergieManagementSystem(
|
||||
self._config.eos,
|
||||
self.ems.set_parameters(
|
||||
parameters.ems,
|
||||
wechselrichter=wr,
|
||||
eauto=eauto,
|
||||
home_appliance=dishwasher,
|
||||
)
|
||||
self.ems.set_start_hour(start_hour)
|
||||
|
||||
# Setup the DEAP environment and optimization process
|
||||
self.setup_deap_environment({"home_appliance": 1 if dishwasher else 0}, start_hour)
|
||||
self.toolbox.register(
|
||||
"evaluate",
|
||||
lambda ind: self.evaluate(ind, ems, parameters, start_hour, worst_case),
|
||||
lambda ind: self.evaluate(ind, parameters, start_hour, worst_case),
|
||||
)
|
||||
start_solution, extra_data = self.optimize(parameters.start_solution, ngen=ngen)
|
||||
|
||||
# Perform final evaluation on the best solution
|
||||
o = self.evaluate_inner(start_solution, ems, start_hour)
|
||||
o = self.evaluate_inner(start_solution)
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
|
||||
start_solution
|
||||
)
|
||||
eautocharge_hours_float = (
|
||||
[
|
||||
self._config.eos.available_charging_rates_in_percentage[i]
|
||||
self.config.optimization_ev_available_charge_rates_percent[i]
|
||||
for i in eautocharge_hours_index
|
||||
]
|
||||
if eautocharge_hours_index is not None
|
||||
@@ -552,7 +559,6 @@ class optimization_problem:
|
||||
parameters.temperature_forecast,
|
||||
start_hour,
|
||||
einspeiseverguetung_euro_pro_wh,
|
||||
config=self._config,
|
||||
extra_data=extra_data,
|
||||
)
|
||||
|
||||
@@ -563,7 +569,7 @@ class optimization_problem:
|
||||
"discharge_allowed": discharge,
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": SimulationResult(**o),
|
||||
"eauto_obj": ems.eauto,
|
||||
"eauto_obj": self.ems.eauto,
|
||||
"start_solution": start_solution,
|
||||
"washingstart": washingstart_int,
|
||||
}
|
||||
|
Reference in New Issue
Block a user