Improve Configuration and Prediction Usability (#220)

* Update utilities in utils submodule.
* Add base configuration modules.
* Add server base configuration modules.
* Add devices base configuration modules.
* Add optimization base configuration modules.
* Add utils base configuration modules.
* Add prediction abstract and base classes plus tests.
* Add PV forecast to prediction submodule.
   The PV forecast modules are adapted from the class_pvforecast module and
   replace it.
* Add weather forecast to prediction submodule.
   The modules provide classes and methods to retrieve, manage, and process weather forecast data
   from various sources. Includes are structured representations of weather data and utilities
   for fetching forecasts for specific locations and time ranges.
   BrightSky and ClearOutside are currently supported.
* Add electricity price forecast to prediction submodule.
* Adapt fastapi server to base config and add fasthtml server.
* Add ems to core submodule.
* Adapt genetic to config.
* Adapt visualize to config.
* Adapt common test fixtures to config.
* Add load forecast to prediction submodule.
* Add core abstract and base classes.
* Adapt single test optimization to config.
* Adapt devices to config.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2024-12-15 14:40:03 +01:00
committed by GitHub
parent a5e637ab4c
commit aa334d0b61
80 changed files with 29048 additions and 2451 deletions

View File

@@ -0,0 +1,164 @@
"""Retrieves and processes electricity price forecast data from Akkudoktor.
This module provides classes and mappings to manage electricity price data obtained from the
Akkudoktor API, including support for various electricity price attributes such as temperature,
humidity, cloud cover, and solar irradiance. The data is mapped to the `ElecPriceDataRecord`
format, enabling consistent access to forecasted and historical electricity price attributes.
"""
from typing import Any, List, Optional, Union
import requests
from pydantic import ValidationError
from akkudoktoreos.core.pydantic import PydanticBaseModel
from akkudoktoreos.prediction.elecpriceabc import ElecPriceDataRecord, ElecPriceProvider
from akkudoktoreos.utils.cacheutil import cache_in_file
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
from akkudoktoreos.utils.logutil import get_logger
logger = get_logger(__name__)
class AkkudoktorElecPriceMeta(PydanticBaseModel):
start_timestamp: int
end_timestamp: int
start: str
end: str
class AkkudoktorElecPriceValue(PydanticBaseModel):
start_timestamp: int
end_timestamp: int
start: str
end: str
marketprice: float
unit: str
marketpriceEurocentPerKWh: float
class AkkudoktorElecPrice(PydanticBaseModel):
meta: AkkudoktorElecPriceMeta
values: List[AkkudoktorElecPriceValue]
class ElecPriceAkkudoktor(ElecPriceProvider):
"""Fetch and process electricity price forecast data from Akkudoktor.
ElecPriceAkkudoktor is a singleton-based class that retrieves electricity price forecast data
from the Akkudoktor API and maps it to `ElecPriceDataRecord` fields, applying
any necessary scaling or unit corrections. It manages the forecast over a range
of hours into the future and retains historical data.
Attributes:
prediction_hours (int, optional): Number of hours in the future for the forecast.
prediction_historic_hours (int, optional): Number of past hours for retaining data.
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
Methods:
provider_id(): Returns a unique identifier for the provider.
_request_forecast(): Fetches the forecast from the Akkudoktor API.
_update_data(): Processes and updates forecast data from Akkudoktor in ElecPriceDataRecord format.
"""
@classmethod
def provider_id(cls) -> str:
"""Return the unique identifier for the Akkudoktor provider."""
return "Akkudoktor"
@classmethod
def _validate_data(cls, json_str: Union[bytes, Any]) -> AkkudoktorElecPrice:
"""Validate Akkudoktor Electricity Price forecast data."""
try:
akkudoktor_data = AkkudoktorElecPrice.model_validate_json(json_str)
except ValidationError as e:
error_msg = ""
for error in e.errors():
field = " -> ".join(str(x) for x in error["loc"])
message = error["msg"]
error_type = error["type"]
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
logger.error(f"Akkudoktor schema change: {error_msg}")
raise ValueError(error_msg)
return akkudoktor_data
@cache_in_file(with_ttl="1 hour")
def _request_forecast(self) -> AkkudoktorElecPrice:
"""Fetch electricity price forecast data from Akkudoktor API.
This method sends a request to Akkudoktor's API to retrieve forecast data for a specified
date range. The response data is parsed and returned as JSON for further processing.
Returns:
dict: The parsed JSON response from Akkudoktor API containing forecast data.
Raises:
ValueError: If the API response does not include expected `electricity price` data.
"""
source = "https://api.akkudoktor.net"
date = to_datetime(self.start_datetime, as_string="%Y-%m-%d")
last_date = to_datetime(self.end_datetime, as_string="%Y-%m-%d")
response = requests.get(
f"{source}/prices?date={date}&last_date={last_date}&tz={self.config.timezone}"
)
response.raise_for_status() # Raise an error for bad responses
logger.debug(f"Response from {source}: {response}")
akkudoktor_data = self._validate_data(response.content)
# We are working on fresh data (no cache), report update time
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
return akkudoktor_data
def _update_data(self, force_update: Optional[bool] = False) -> None:
"""Update forecast data in the ElecPriceDataRecord format.
Retrieves data from Akkudoktor, maps each Akkudoktor field to the corresponding
`ElecPriceDataRecord` and applies any necessary scaling.
The final mapped and processed data is inserted into the sequence as `ElecPriceDataRecord`.
"""
# Get Akkudoktor electricity price data
akkudoktor_data = self._request_forecast(force_update=force_update) # type: ignore
# Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps.
values_len = len(akkudoktor_data.values)
if values_len < 1:
# Expect one value set per prediction hour
raise ValueError(
f"The forecast must have at least one dataset, "
f"but only {values_len} data sets are given in forecast data."
)
previous_price = akkudoktor_data.values[0].marketpriceEurocentPerKWh
for i in range(values_len):
original_datetime = akkudoktor_data.values[i].start
dt = to_datetime(original_datetime, in_timezone=self.config.timezone)
if compare_datetimes(dt, self.start_datetime).le:
# forecast data is too old
previous_price = akkudoktor_data.values[i].marketpriceEurocentPerKWh
continue
record = ElecPriceDataRecord(
date_time=dt,
elecprice_marketprice=akkudoktor_data.values[i].marketpriceEurocentPerKWh,
)
self.append(record)
# Assure price starts at start_time
if compare_datetimes(self[0].date_time, self.start_datetime).gt:
record = ElecPriceDataRecord(
date_time=self.start_datetime,
elecprice_marketprice=previous_price,
)
self.insert(0, record)
# Assure price ends at end_time
if compare_datetimes(self[-1].date_time, self.end_datetime).lt:
record = ElecPriceDataRecord(
date_time=self.end_datetime,
elecprice_marketprice=self[-1].elecprice_marketprice,
)
self.append(record)
# If some of the hourly values are missing, they will be interpolated when using
# `key_to_array`.