mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-11 20:06:18 +00:00
Improve Configuration and Prediction Usability (#220)
* Update utilities in utils submodule. * Add base configuration modules. * Add server base configuration modules. * Add devices base configuration modules. * Add optimization base configuration modules. * Add utils base configuration modules. * Add prediction abstract and base classes plus tests. * Add PV forecast to prediction submodule. The PV forecast modules are adapted from the class_pvforecast module and replace it. * Add weather forecast to prediction submodule. The modules provide classes and methods to retrieve, manage, and process weather forecast data from various sources. Includes are structured representations of weather data and utilities for fetching forecasts for specific locations and time ranges. BrightSky and ClearOutside are currently supported. * Add electricity price forecast to prediction submodule. * Adapt fastapi server to base config and add fasthtml server. * Add ems to core submodule. * Adapt genetic to config. * Adapt visualize to config. * Adapt common test fixtures to config. * Add load forecast to prediction submodule. * Add core abstract and base classes. * Adapt single test optimization to config. * Adapt devices to config. Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
229
src/akkudoktoreos/prediction/weatherbrightsky.py
Normal file
229
src/akkudoktoreos/prediction/weatherbrightsky.py
Normal file
@@ -0,0 +1,229 @@
|
||||
"""Retrieves and processes weather forecast data from BrightSky.
|
||||
|
||||
This module provides classes and mappings to manage weather data obtained from the
|
||||
BrightSky API, including support for various weather attributes such as temperature,
|
||||
humidity, cloud cover, and solar irradiance. The data is mapped to the `WeatherDataRecord`
|
||||
format, enabling consistent access to forecasted and historical weather attributes.
|
||||
"""
|
||||
|
||||
import json
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import pandas as pd
|
||||
import pvlib
|
||||
import requests
|
||||
|
||||
from akkudoktoreos.prediction.weatherabc import WeatherDataRecord, WeatherProvider
|
||||
from akkudoktoreos.utils.cacheutil import cache_in_file
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime
|
||||
from akkudoktoreos.utils.logutil import get_logger
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
WheaterDataBrightSkyMapping: List[Tuple[str, Optional[str], Optional[float]]] = [
|
||||
# brightsky_key, description, corr_factor
|
||||
("timestamp", "DateTime", None),
|
||||
("precipitation", "Precipitation Amount (mm)", 1),
|
||||
("pressure_msl", "Pressure (mb)", 1),
|
||||
("sunshine", None, None),
|
||||
("temperature", "Temperature (°C)", 1),
|
||||
("wind_direction", "Wind Direction (°)", 1),
|
||||
("wind_speed", "Wind Speed (kmph)", 1),
|
||||
("cloud_cover", "Total Clouds (% Sky Obscured)", 1),
|
||||
("dew_point", "Dew Point (°C)", 1),
|
||||
("relative_humidity", "Relative Humidity (%)", 1),
|
||||
("visibility", "Visibility (m)", 1),
|
||||
("wind_gust_direction", None, None),
|
||||
("wind_gust_speed", None, None),
|
||||
("condition", None, None),
|
||||
("precipitation_probability", "Precipitation Probability (%)", 1),
|
||||
("precipitation_probability_6h", None, None),
|
||||
("solar", "Global Horizontal Irradiance (W/m2)", 1000),
|
||||
("fallback_source_ids", None, None),
|
||||
("icon", None, None),
|
||||
]
|
||||
"""Mapping of BrightSky weather data keys to WeatherDataRecord field descriptions.
|
||||
|
||||
Each tuple represents a field in the BrightSky data, with:
|
||||
- The BrightSky field key,
|
||||
- The corresponding `WeatherDataRecord` description, if applicable,
|
||||
- A correction factor for unit or value scaling.
|
||||
Fields without descriptions or correction factors are mapped to `None`.
|
||||
"""
|
||||
|
||||
|
||||
class WeatherBrightSky(WeatherProvider):
|
||||
"""Fetch and process weather forecast data from BrightSky.
|
||||
|
||||
WeatherBrightSky is a singleton-based class that retrieves weather forecast data
|
||||
from the BrightSky API and maps it to `WeatherDataRecord` fields, applying
|
||||
any necessary scaling or unit corrections. It manages the forecast over a range
|
||||
of hours into the future and retains historical data.
|
||||
|
||||
Attributes:
|
||||
prediction_hours (int, optional): Number of hours in the future for the forecast.
|
||||
prediction_historic_hours (int, optional): Number of past hours for retaining data.
|
||||
latitude (float, optional): The latitude in degrees, validated to be between -90 and 90.
|
||||
longitude (float, optional): The longitude in degrees, validated to be between -180 and 180.
|
||||
start_datetime (datetime, optional): Start datetime for forecasts, defaults to the current datetime.
|
||||
end_datetime (datetime, computed): The forecast's end datetime, computed based on `start_datetime` and `prediction_hours`.
|
||||
keep_datetime (datetime, computed): The datetime to retain historical data, computed from `start_datetime` and `prediction_historic_hours`.
|
||||
|
||||
Methods:
|
||||
provider_id(): Returns a unique identifier for the provider.
|
||||
_request_forecast(): Fetches the forecast from the BrightSky API.
|
||||
_update_data(): Processes and updates forecast data from BrightSky in WeatherDataRecord format.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def provider_id(cls) -> str:
|
||||
"""Return the unique identifier for the BrightSky provider."""
|
||||
return "BrightSky"
|
||||
|
||||
@cache_in_file(with_ttl="1 hour")
|
||||
def _request_forecast(self) -> dict:
|
||||
"""Fetch weather forecast data from BrightSky API.
|
||||
|
||||
This method sends a request to BrightSky's API to retrieve forecast data
|
||||
for a specified date range and location. The response data is parsed and
|
||||
returned as JSON for further processing.
|
||||
|
||||
Returns:
|
||||
dict: The parsed JSON response from BrightSky API containing forecast data.
|
||||
|
||||
Raises:
|
||||
ValueError: If the API response does not include expected `weather` data.
|
||||
"""
|
||||
source = "https://api.brightsky.dev"
|
||||
date = to_datetime(self.start_datetime, as_string="%Y-%m-%d")
|
||||
last_date = to_datetime(self.end_datetime, as_string="%Y-%m-%d")
|
||||
response = requests.get(
|
||||
f"{source}/weather?lat={self.config.latitude}&lon={self.config.longitude}&date={date}&last_date={last_date}&tz={self.config.timezone}"
|
||||
)
|
||||
response.raise_for_status() # Raise an error for bad responses
|
||||
logger.debug(f"Response from {source}: {response}")
|
||||
brightsky_data = json.loads(response.content)
|
||||
if "weather" not in brightsky_data:
|
||||
error_msg = f"BrightSky schema change. `wheather`expected to be part of BrightSky data: {brightsky_data}."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
# We are working on fresh data (no cache), report update time
|
||||
self.update_datetime = to_datetime(in_timezone=self.config.timezone)
|
||||
return brightsky_data
|
||||
|
||||
def _description_to_series(self, description: str) -> pd.Series:
|
||||
"""Retrieve a pandas Series corresponding to a weather data description.
|
||||
|
||||
This method fetches the key associated with the provided description
|
||||
and retrieves the data series mapped to that key. If the description
|
||||
does not correspond to a valid key, a `ValueError` is raised.
|
||||
|
||||
Args:
|
||||
description (str): The description of the WeatherDataRecord to retrieve.
|
||||
|
||||
Returns:
|
||||
pd.Series: The data series corresponding to the description.
|
||||
|
||||
Raises:
|
||||
ValueError: If no key is found for the provided description.
|
||||
"""
|
||||
key = WeatherDataRecord.key_from_description(description)
|
||||
if key is None:
|
||||
error_msg = f"No WeatherDataRecord key for '{description}'"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
return self.key_to_series(key)
|
||||
|
||||
def _description_from_series(self, description: str, data: pd.Series) -> None:
|
||||
"""Update a weather data with a pandas Series based on its description.
|
||||
|
||||
This method fetches the key associated with the provided description
|
||||
and updates the weather data with the provided data series. If the description
|
||||
does not correspond to a valid key, a `ValueError` is raised.
|
||||
|
||||
Args:
|
||||
description (str): The description of the weather data to update.
|
||||
data (pd.Series): The pandas Series containing the data to update.
|
||||
|
||||
Raises:
|
||||
ValueError: If no key is found for the provided description.
|
||||
"""
|
||||
key = WeatherDataRecord.key_from_description(description)
|
||||
if key is None:
|
||||
error_msg = f"No WeatherDataRecord key for '{description}'"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
self.key_from_series(key, data)
|
||||
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
"""Update forecast data in the WeatherDataRecord format.
|
||||
|
||||
Retrieves data from BrightSky, maps each BrightSky field to the corresponding
|
||||
`WeatherDataRecord` attribute using `WheaterDataBrightSkyMapping`, and applies
|
||||
any necessary scaling. Forecast data such as cloud cover, temperature, and
|
||||
humidity is further processed to estimate solar irradiance and precipitable water.
|
||||
|
||||
The final mapped and processed data is inserted into the sequence as `WeatherDataRecord`.
|
||||
"""
|
||||
# Get BrightSky weather data for the given coordinates
|
||||
brightsky_data = self._request_forecast(force_update=force_update) # type: ignore
|
||||
|
||||
# Get key mapping from description
|
||||
brightsky_key_mapping: Dict[str, Tuple[Optional[str], Optional[float]]] = {}
|
||||
for brightsky_key, description, corr_factor in WheaterDataBrightSkyMapping:
|
||||
if description is None:
|
||||
brightsky_key_mapping[brightsky_key] = (None, None)
|
||||
continue
|
||||
weatherdata_key = WeatherDataRecord.key_from_description(description)
|
||||
if weatherdata_key is None:
|
||||
# Should not happen
|
||||
error_msg = "No WeatherDataRecord key for 'description'"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
brightsky_key_mapping[brightsky_key] = (weatherdata_key, corr_factor)
|
||||
|
||||
for brightsky_record in brightsky_data["weather"]:
|
||||
weather_record = WeatherDataRecord()
|
||||
for brightsky_key, item in brightsky_key_mapping.items():
|
||||
key = item[0]
|
||||
if key is None:
|
||||
continue
|
||||
value = brightsky_record[brightsky_key]
|
||||
corr_factor = item[1]
|
||||
if value and corr_factor:
|
||||
value = value * corr_factor
|
||||
setattr(weather_record, key, value)
|
||||
self.insert_by_datetime(weather_record)
|
||||
|
||||
# Converting the cloud cover into Irradiance (GHI, DNI, DHI)
|
||||
description = "Total Clouds (% Sky Obscured)"
|
||||
cloud_cover = self._description_to_series(description)
|
||||
ghi, dni, dhi = self.estimate_irradiance_from_cloud_cover(
|
||||
self.config.latitude, self.config.longitude, cloud_cover
|
||||
)
|
||||
|
||||
description = "Global Horizontal Irradiance (W/m2)"
|
||||
ghi = pd.Series(data=ghi, index=cloud_cover.index)
|
||||
self._description_from_series(description, ghi)
|
||||
|
||||
description = "Direct Normal Irradiance (W/m2)"
|
||||
dni = pd.Series(data=dni, index=cloud_cover.index)
|
||||
self._description_from_series(description, dni)
|
||||
|
||||
description = "Diffuse Horizontal Irradiance (W/m2)"
|
||||
dhi = pd.Series(data=dhi, index=cloud_cover.index)
|
||||
self._description_from_series(description, dhi)
|
||||
|
||||
# Add Preciptable Water (PWAT) with a PVLib method.
|
||||
description = "Temperature (°C)"
|
||||
temperature = self._description_to_series(description)
|
||||
|
||||
description = "Relative Humidity (%)"
|
||||
humidity = self._description_to_series(description)
|
||||
|
||||
pwat = pd.Series(
|
||||
data=pvlib.atmosphere.gueymard94_pw(temperature, humidity), index=temperature.index
|
||||
)
|
||||
description = "Preciptable Water (cm)"
|
||||
self._description_from_series(description, pwat)
|
Reference in New Issue
Block a user