Improve EOSdash.

Make EOSdash use UI components from MonsterUI to ease further development.

- Add a first menu with some dummy pages and the configuration page.
- Make the configuration scrollable.
- Add markdown component that uses markdown-it-py (same as used by
  the myth-parser for documentation generation).
- Add bokeh (https://docs.bokeh.org/) component for charts
- Added several prediction charts to demo
- Add a footer that displays connection status with EOS server
- Add logo and favicon

Update EOS server:

- Move error message generation to extra module
- Use redirect instead of proxy

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
Bobby Noelte
2025-01-22 23:47:28 +01:00
parent 80bfe4d0f0
commit ab6a518b5f
34 changed files with 1802 additions and 351 deletions

View File

@@ -0,0 +1,217 @@
import json
from pathlib import Path
from typing import Union
import pandas as pd
import requests
from bokeh.models import ColumnDataSource, Range1d
from bokeh.plotting import figure
from monsterui.franken import FT, Grid, P
from akkudoktoreos.core.logging import get_logger
from akkudoktoreos.core.pydantic import PydanticDateTimeDataFrame
from akkudoktoreos.server.dash.bokeh import Bokeh
DIR_DEMODATA = Path(__file__).absolute().parent.joinpath("data")
FILE_DEMOCONFIG = DIR_DEMODATA.joinpath("democonfig.json")
if not FILE_DEMOCONFIG.exists():
raise ValueError(f"File does not exist: {FILE_DEMOCONFIG}")
logger = get_logger(__name__)
# bar width for 1 hour bars (time given in millseconds)
BAR_WIDTH_1HOUR = 1000 * 60 * 60
def DemoPVForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["pvforecast"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"PV Power Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Power [W]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="pvforecast_ac_power",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="AC Power",
color="lightblue",
)
return Bokeh(plot)
def DemoElectricityPriceForecast(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["elecprice"]["provider"]
plot = figure(
x_axis_type="datetime",
y_range=Range1d(
predictions["elecprice_marketprice_kwh"].min() - 0.1,
predictions["elecprice_marketprice_kwh"].max() + 0.1,
),
title=f"Electricity Price Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Price [€/kWh]",
sizing_mode="stretch_width",
height=400,
)
plot.vbar(
x="date_time",
top="elecprice_marketprice_kwh",
source=source,
width=BAR_WIDTH_1HOUR * 0.8,
legend_label="Market Price",
color="lightblue",
)
return Bokeh(plot)
def DemoWeatherTempAir(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
y_range=Range1d(
predictions["weather_temp_air"].min() - 1.0, predictions["weather_temp_air"].max() + 1.0
),
title=f"Air Temperature Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Temperature [°C]",
sizing_mode="stretch_width",
height=400,
)
plot.line(
"date_time", "weather_temp_air", source=source, legend_label="Air Temperature", color="blue"
)
return Bokeh(plot)
def DemoWeatherIrradiance(predictions: pd.DataFrame, config: dict) -> FT:
source = ColumnDataSource(predictions)
provider = config["weather"]["provider"]
plot = figure(
x_axis_type="datetime",
title=f"Irradiance Prediction ({provider})",
x_axis_label="Datetime",
y_axis_label="Irradiance [W/m2]",
sizing_mode="stretch_width",
height=400,
)
plot.line(
"date_time",
"weather_ghi",
source=source,
legend_label="Global Horizontal Irradiance",
color="red",
)
plot.line(
"date_time",
"weather_dni",
source=source,
legend_label="Direct Normal Irradiance",
color="green",
)
plot.line(
"date_time",
"weather_dhi",
source=source,
legend_label="Diffuse Horizontal Irradiance",
color="blue",
)
return Bokeh(plot)
def Demo(eos_host: str, eos_port: Union[str, int]) -> str:
server = f"http://{eos_host}:{eos_port}"
# Get current configuration from server
try:
result = requests.get(f"{server}/v1/config")
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve configuration from {server}: {err}, {detail}",
cls="text-center",
)
config = result.json()
# Set demo configuration
with FILE_DEMOCONFIG.open("r", encoding="utf-8") as fd:
democonfig = json.load(fd)
try:
result = requests.put(f"{server}/v1/config", json=democonfig)
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config)
return P(
f"Can not set demo configuration on {server}: {err}, {detail}",
cls="text-center",
)
# Update all predictions
try:
result = requests.post(f"{server}/v1/prediction/update")
result.raise_for_status()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
# Try to reset to original config
requests.put(f"{server}/v1/config", json=config)
return P(
f"Can not update predictions on {server}: {err}, {detail}",
cls="text-center",
)
# Get Forecasts
try:
params = {
"keys": [
"pvforecast_ac_power",
"elecprice_marketprice_kwh",
"weather_temp_air",
"weather_ghi",
"weather_dni",
"weather_dhi",
],
}
result = requests.get(f"{server}/v1/prediction/dataframe", params=params)
result.raise_for_status()
predictions = PydanticDateTimeDataFrame(**result.json()).to_dataframe()
except requests.exceptions.HTTPError as err:
detail = result.json()["detail"]
return P(
f"Can not retrieve predictions from {server}: {err}, {detail}",
cls="text-center",
)
except Exception as err:
return P(
f"Can not retrieve predictions from {server}: {err}",
cls="text-center",
)
# Reset to original config
requests.put(f"{server}/v1/config", json=config)
return Grid(
DemoPVForecast(predictions, democonfig),
DemoElectricityPriceForecast(predictions, democonfig),
DemoWeatherTempAir(predictions, democonfig),
DemoWeatherIrradiance(predictions, democonfig),
cols_max=2,
)