mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-11-02 07:46:20 +00:00
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
@@ -28,12 +28,17 @@ from typing import (
|
||||
|
||||
import cachebox
|
||||
from loguru import logger
|
||||
from pendulum import DateTime, Duration
|
||||
from pydantic import Field
|
||||
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin, SingletonMixin
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
|
||||
from akkudoktoreos.utils.datetimeutil import (
|
||||
DateTime,
|
||||
Duration,
|
||||
compare_datetimes,
|
||||
to_datetime,
|
||||
to_duration,
|
||||
)
|
||||
|
||||
# ---------------------------------
|
||||
# In-Memory Caching Functionality
|
||||
@@ -43,25 +48,28 @@ from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_
|
||||
TCallable = TypeVar("TCallable", bound=Callable[..., Any])
|
||||
|
||||
|
||||
def cache_until_update_store_callback(event: int, key: Any, value: Any) -> None:
|
||||
"""Calback function for CacheUntilUpdateStore."""
|
||||
CacheUntilUpdateStore.last_event = event
|
||||
CacheUntilUpdateStore.last_key = key
|
||||
CacheUntilUpdateStore.last_value = value
|
||||
def cache_energy_management_store_callback(event: int, key: Any, value: Any) -> None:
|
||||
"""Calback function for CacheEnergyManagementStore."""
|
||||
CacheEnergyManagementStore.last_event = event
|
||||
CacheEnergyManagementStore.last_key = key
|
||||
CacheEnergyManagementStore.last_value = value
|
||||
if event == cachebox.EVENT_MISS:
|
||||
CacheUntilUpdateStore.miss_count += 1
|
||||
CacheEnergyManagementStore.miss_count += 1
|
||||
elif event == cachebox.EVENT_HIT:
|
||||
CacheUntilUpdateStore.hit_count += 1
|
||||
CacheEnergyManagementStore.hit_count += 1
|
||||
else:
|
||||
# unreachable code
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class CacheUntilUpdateStore(SingletonMixin):
|
||||
class CacheEnergyManagementStore(SingletonMixin):
|
||||
"""Singleton-based in-memory LRU (Least Recently Used) cache.
|
||||
|
||||
This cache is shared across the application to store results of decorated
|
||||
methods or functions until the next EMS (Energy Management System) update.
|
||||
methods or functions during energy management runs.
|
||||
|
||||
Energy management tasks shall clear the cache at the start of the energy management
|
||||
task.
|
||||
|
||||
The cache uses an LRU eviction strategy, storing up to 100 items, with the oldest
|
||||
items being evicted once the cache reaches its capacity.
|
||||
@@ -75,14 +83,14 @@ class CacheUntilUpdateStore(SingletonMixin):
|
||||
miss_count: ClassVar[int] = 0
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
"""Initializes the `CacheUntilUpdateStore` instance with default parameters.
|
||||
"""Initializes the `CacheEnergyManagementStore` instance with default parameters.
|
||||
|
||||
The cache uses an LRU eviction strategy with a maximum size of 100 items.
|
||||
This cache is a singleton, meaning only one instance will exist throughout
|
||||
the application lifecycle.
|
||||
|
||||
Example:
|
||||
>>> cache = CacheUntilUpdateStore()
|
||||
>>> cache = CacheEnergyManagementStore()
|
||||
"""
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
@@ -128,7 +136,7 @@ class CacheUntilUpdateStore(SingletonMixin):
|
||||
Example:
|
||||
>>> value = cache["user_data"]
|
||||
"""
|
||||
return CacheUntilUpdateStore.cache[key]
|
||||
return CacheEnergyManagementStore.cache[key]
|
||||
|
||||
def __setitem__(self, key: Any, value: Any) -> None:
|
||||
"""Stores an item in the cache.
|
||||
@@ -140,15 +148,15 @@ class CacheUntilUpdateStore(SingletonMixin):
|
||||
Example:
|
||||
>>> cache["user_data"] = {"name": "Alice", "age": 30}
|
||||
"""
|
||||
CacheUntilUpdateStore.cache[key] = value
|
||||
CacheEnergyManagementStore.cache[key] = value
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Returns the number of items in the cache."""
|
||||
return len(CacheUntilUpdateStore.cache)
|
||||
return len(CacheEnergyManagementStore.cache)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Provides a string representation of the CacheUntilUpdateStore object."""
|
||||
return repr(CacheUntilUpdateStore.cache)
|
||||
"""Provides a string representation of the CacheEnergyManagementStore object."""
|
||||
return repr(CacheEnergyManagementStore.cache)
|
||||
|
||||
def clear(self) -> None:
|
||||
"""Clears the cache, removing all stored items.
|
||||
@@ -161,22 +169,22 @@ class CacheUntilUpdateStore(SingletonMixin):
|
||||
>>> cache.clear()
|
||||
"""
|
||||
if hasattr(self.cache, "clear") and callable(getattr(self.cache, "clear")):
|
||||
CacheUntilUpdateStore.cache.clear()
|
||||
CacheUntilUpdateStore.last_event = None
|
||||
CacheUntilUpdateStore.last_key = None
|
||||
CacheUntilUpdateStore.last_value = None
|
||||
CacheUntilUpdateStore.miss_count = 0
|
||||
CacheUntilUpdateStore.hit_count = 0
|
||||
CacheEnergyManagementStore.cache.clear()
|
||||
CacheEnergyManagementStore.last_event = None
|
||||
CacheEnergyManagementStore.last_key = None
|
||||
CacheEnergyManagementStore.last_value = None
|
||||
CacheEnergyManagementStore.miss_count = 0
|
||||
CacheEnergyManagementStore.hit_count = 0
|
||||
else:
|
||||
raise AttributeError(f"'{self.cache.__class__.__name__}' object has no method 'clear'")
|
||||
|
||||
|
||||
def cachemethod_until_update(method: TCallable) -> TCallable:
|
||||
def cachemethod_energy_management(method: TCallable) -> TCallable:
|
||||
"""Decorator for in memory caching the result of an instance method.
|
||||
|
||||
This decorator caches the method's result in `CacheUntilUpdateStore`, ensuring
|
||||
This decorator caches the method's result in `CacheEnergyManagementStore`, ensuring
|
||||
that subsequent calls with the same arguments return the cached result until the
|
||||
next EMS update cycle.
|
||||
next energy management start.
|
||||
|
||||
Args:
|
||||
method (Callable): The instance method to be decorated.
|
||||
@@ -186,14 +194,14 @@ def cachemethod_until_update(method: TCallable) -> TCallable:
|
||||
|
||||
Example:
|
||||
>>> class MyClass:
|
||||
>>> @cachemethod_until_update
|
||||
>>> @cachemethod_energy_management
|
||||
>>> def expensive_method(self, param: str) -> str:
|
||||
>>> # Perform expensive computation
|
||||
>>> return f"Computed {param}"
|
||||
"""
|
||||
|
||||
@cachebox.cachedmethod(
|
||||
cache=CacheUntilUpdateStore().cache, callback=cache_until_update_store_callback
|
||||
cache=CacheEnergyManagementStore().cache, callback=cache_energy_management_store_callback
|
||||
)
|
||||
@functools.wraps(method)
|
||||
def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any:
|
||||
@@ -203,12 +211,12 @@ def cachemethod_until_update(method: TCallable) -> TCallable:
|
||||
return wrapper
|
||||
|
||||
|
||||
def cache_until_update(func: TCallable) -> TCallable:
|
||||
def cache_energy_management(func: TCallable) -> TCallable:
|
||||
"""Decorator for in memory caching the result of a standalone function.
|
||||
|
||||
This decorator caches the function's result in `CacheUntilUpdateStore`, ensuring
|
||||
This decorator caches the function's result in `CacheEnergyManagementStore`, ensuring
|
||||
that subsequent calls with the same arguments return the cached result until the
|
||||
next EMS update cycle.
|
||||
next energy management start.
|
||||
|
||||
Args:
|
||||
func (Callable): The function to be decorated.
|
||||
@@ -224,7 +232,7 @@ def cache_until_update(func: TCallable) -> TCallable:
|
||||
"""
|
||||
|
||||
@cachebox.cached(
|
||||
cache=CacheUntilUpdateStore().cache, callback=cache_until_update_store_callback
|
||||
cache=CacheEnergyManagementStore().cache, callback=cache_energy_management_store_callback
|
||||
)
|
||||
@functools.wraps(func)
|
||||
def wrapper(*args: Any, **kwargs: Any) -> Any:
|
||||
@@ -435,7 +443,7 @@ class CacheFileStore(ConfigMixin, SingletonMixin):
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Search: ttl:{ttl_duration}, until:{until_datetime}, at:{at_datetime}, before:{before_datetime} -> hit: {generated_key == cache_file_key}, item: {cache_item.cache_file.seek(0), cache_item.cache_file.read()}"
|
||||
f"Search: ttl:{ttl_duration}, until:{until_datetime}, at:{at_datetime}, before:{before_datetime} -> hit: {generated_key == cache_file_key}, item: {cache_item.cache_file.seek(0), cache_item.cache_file.read()[:10]}..."
|
||||
)
|
||||
|
||||
if generated_key == cache_file_key:
|
||||
|
||||
@@ -14,13 +14,13 @@ import threading
|
||||
from typing import Any, ClassVar, Dict, Optional, Type
|
||||
|
||||
from loguru import logger
|
||||
from pendulum import DateTime
|
||||
from pydantic import computed_field
|
||||
|
||||
from akkudoktoreos.core.decorators import classproperty
|
||||
from akkudoktoreos.utils.datetimeutil import DateTime
|
||||
|
||||
config_eos: Any = None
|
||||
measurement_eos: Any = None
|
||||
prediction_eos: Any = None
|
||||
devices_eos: Any = None
|
||||
ems_eos: Any = None
|
||||
|
||||
|
||||
@@ -46,9 +46,9 @@ class ConfigMixin:
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def config(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS configuration data.
|
||||
@classproperty
|
||||
def config(cls) -> Any:
|
||||
"""Convenience class method/ attribute to retrieve the EOS configuration data.
|
||||
|
||||
Returns:
|
||||
ConfigEOS: The configuration.
|
||||
@@ -86,9 +86,9 @@ class MeasurementMixin:
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def measurement(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS measurement data.
|
||||
@classproperty
|
||||
def measurement(cls) -> Any:
|
||||
"""Convenience class method/ attribute to retrieve the EOS measurement data.
|
||||
|
||||
Returns:
|
||||
Measurement: The measurement.
|
||||
@@ -126,9 +126,9 @@ class PredictionMixin:
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def prediction(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS prediction data.
|
||||
@classproperty
|
||||
def prediction(cls) -> Any:
|
||||
"""Convenience class method/ attribute to retrieve the EOS prediction data.
|
||||
|
||||
Returns:
|
||||
Prediction: The prediction.
|
||||
@@ -143,46 +143,6 @@ class PredictionMixin:
|
||||
return prediction_eos
|
||||
|
||||
|
||||
class DevicesMixin:
|
||||
"""Mixin class for managing EOS devices simulation data.
|
||||
|
||||
This class serves as a foundational component for EOS-related classes requiring access
|
||||
to global devices simulation data. It provides a `devices` property that dynamically retrieves
|
||||
the devices instance, ensuring up-to-date access to devices simulation results.
|
||||
|
||||
Usage:
|
||||
Subclass this base class to gain access to the `devices` attribute, which retrieves the
|
||||
global devices instance lazily to avoid import-time circular dependencies.
|
||||
|
||||
Attributes:
|
||||
devices (Devices): Property to access the global EOS devices simulation data.
|
||||
|
||||
Example:
|
||||
```python
|
||||
class MyOptimizationClass(DevicesMixin):
|
||||
def analyze_mydevicesimulation(self):
|
||||
device_simulation_data = self.devices.mydevicesresult
|
||||
# Perform analysis
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def devices(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS devices simulation data.
|
||||
|
||||
Returns:
|
||||
Devices: The devices simulation.
|
||||
"""
|
||||
# avoid circular dependency at import time
|
||||
global devices_eos
|
||||
if devices_eos is None:
|
||||
from akkudoktoreos.devices.devices import get_devices
|
||||
|
||||
devices_eos = get_devices()
|
||||
|
||||
return devices_eos
|
||||
|
||||
|
||||
class EnergyManagementSystemMixin:
|
||||
"""Mixin class for managing EOS energy management system.
|
||||
|
||||
@@ -207,9 +167,9 @@ class EnergyManagementSystemMixin:
|
||||
```
|
||||
"""
|
||||
|
||||
@property
|
||||
def ems(self) -> Any:
|
||||
"""Convenience method/ attribute to retrieve the EOS energy management system.
|
||||
@classproperty
|
||||
def ems(cls) -> Any:
|
||||
"""Convenience class method/ attribute to retrieve the EOS energy management system.
|
||||
|
||||
Returns:
|
||||
EnergyManagementSystem: The energy management system.
|
||||
@@ -231,16 +191,21 @@ class StartMixin(EnergyManagementSystemMixin):
|
||||
- `start_datetime`: The starting datetime of the current or latest energy management.
|
||||
"""
|
||||
|
||||
# Computed field for start_datetime
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def start_datetime(self) -> Optional[DateTime]:
|
||||
"""Returns the start datetime of the current or latest energy management.
|
||||
@classproperty
|
||||
def ems_start_datetime(cls) -> Optional[DateTime]:
|
||||
"""Convenience class method/ attribute to retrieve the start datetime of the current or latest energy management.
|
||||
|
||||
Returns:
|
||||
DateTime: The starting datetime of the current or latest energy management, or None.
|
||||
"""
|
||||
return self.ems.start_datetime
|
||||
# avoid circular dependency at import time
|
||||
global ems_eos
|
||||
if ems_eos is None:
|
||||
from akkudoktoreos.core.ems import get_ems
|
||||
|
||||
ems_eos = get_ems()
|
||||
|
||||
return ems_eos.start_datetime
|
||||
|
||||
|
||||
class SingletonMixin:
|
||||
|
||||
@@ -14,14 +14,23 @@ from abc import abstractmethod
|
||||
from collections.abc import MutableMapping, MutableSequence
|
||||
from itertools import chain
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union, overload
|
||||
from typing import (
|
||||
Any,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
overload,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import pendulum
|
||||
from loguru import logger
|
||||
from numpydantic import NDArray, Shape
|
||||
from pendulum import DateTime, Duration
|
||||
from pydantic import (
|
||||
AwareDatetime,
|
||||
ConfigDict,
|
||||
@@ -29,6 +38,7 @@ from pydantic import (
|
||||
ValidationError,
|
||||
computed_field,
|
||||
field_validator,
|
||||
model_validator,
|
||||
)
|
||||
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin, SingletonMixin, StartMixin
|
||||
@@ -37,7 +47,13 @@ from akkudoktoreos.core.pydantic import (
|
||||
PydanticDateTimeData,
|
||||
PydanticDateTimeDataFrame,
|
||||
)
|
||||
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime, to_duration
|
||||
from akkudoktoreos.utils.datetimeutil import (
|
||||
DateTime,
|
||||
Duration,
|
||||
compare_datetimes,
|
||||
to_datetime,
|
||||
to_duration,
|
||||
)
|
||||
|
||||
|
||||
class DataBase(ConfigMixin, StartMixin, PydanticBaseModel):
|
||||
@@ -55,6 +71,11 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Fields can be accessed and mutated both using dictionary-style access (`record['field_name']`)
|
||||
and attribute-style access (`record.field_name`).
|
||||
|
||||
The data record also provides configured field like data. Configuration has to be done by the
|
||||
derived class. Configuration is a list of key strings, which is usually taken from the EOS
|
||||
configuration. The internal field for these data `configured_data` is mostly hidden from
|
||||
dictionary-style and attribute-style access.
|
||||
|
||||
Attributes:
|
||||
date_time (Optional[DateTime]): Aware datetime indicating when the data record applies.
|
||||
|
||||
@@ -65,9 +86,42 @@ class DataRecord(DataBase, MutableMapping):
|
||||
|
||||
date_time: Optional[DateTime] = Field(default=None, description="DateTime")
|
||||
|
||||
configured_data: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Configured field like data",
|
||||
examples=[{"load0_mr": 40421}],
|
||||
)
|
||||
|
||||
# Pydantic v2 model configuration
|
||||
model_config = ConfigDict(arbitrary_types_allowed=True, populate_by_name=True)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def init_configured_field_like_data(cls, data: Any) -> Any:
|
||||
"""Extracts configured data keys from the input and assigns them to `configured_data`.
|
||||
|
||||
This validator is called before the model is initialized. It filters out any keys from the input
|
||||
dictionary that are listed in the configured data keys, and moves them into
|
||||
the `configured_data` field of the model. This enables flexible, key-driven population of
|
||||
dynamic data while keeping the model schema clean.
|
||||
|
||||
Args:
|
||||
data (Any): The raw input data used to initialize the model.
|
||||
|
||||
Returns:
|
||||
Any: The modified input data dictionary, with configured keys moved to `configured_data`.
|
||||
"""
|
||||
if not isinstance(data, dict):
|
||||
return data
|
||||
|
||||
configured_keys: Union[list[str], set] = cls.configured_data_keys() or set()
|
||||
extracted = {k: data.pop(k) for k in list(data.keys()) if k in configured_keys}
|
||||
|
||||
if extracted:
|
||||
data.setdefault("configured_data", {}).update(extracted)
|
||||
|
||||
return data
|
||||
|
||||
@field_validator("date_time", mode="before")
|
||||
@classmethod
|
||||
def transform_to_datetime(cls, value: Any) -> Optional[DateTime]:
|
||||
@@ -77,18 +131,39 @@ class DataRecord(DataBase, MutableMapping):
|
||||
return None
|
||||
return to_datetime(value)
|
||||
|
||||
@classmethod
|
||||
def configured_data_keys(cls) -> Optional[list[str]]:
|
||||
"""Return the keys for the configured field like data.
|
||||
|
||||
Can be overwritten by derived classes to define specific field like data. Usually provided
|
||||
by configuration data.
|
||||
"""
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def record_keys(cls) -> List[str]:
|
||||
"""Returns the keys of all fields in the data record."""
|
||||
key_list = []
|
||||
key_list.extend(list(cls.model_fields.keys()))
|
||||
key_list.extend(list(cls.__pydantic_decorators__.computed_fields.keys()))
|
||||
# Add also keys that may be added by configuration
|
||||
key_list.remove("configured_data")
|
||||
configured_keys = cls.configured_data_keys()
|
||||
if configured_keys is not None:
|
||||
key_list.extend(configured_keys)
|
||||
return key_list
|
||||
|
||||
@classmethod
|
||||
def record_keys_writable(cls) -> List[str]:
|
||||
"""Returns the keys of all fields in the data record that are writable."""
|
||||
return list(cls.model_fields.keys())
|
||||
keys_writable = []
|
||||
keys_writable.extend(list(cls.model_fields.keys()))
|
||||
# Add also keys that may be added by configuration
|
||||
keys_writable.remove("configured_data")
|
||||
configured_keys = cls.configured_data_keys()
|
||||
if configured_keys is not None:
|
||||
keys_writable.extend(configured_keys)
|
||||
return keys_writable
|
||||
|
||||
def _validate_key_writable(self, key: str) -> None:
|
||||
"""Verify that a specified key exists and is writable in the current record keys.
|
||||
@@ -104,6 +179,40 @@ class DataRecord(DataBase, MutableMapping):
|
||||
f"Key '{key}' is not in writable record keys: {self.record_keys_writable()}"
|
||||
)
|
||||
|
||||
def __dir__(self) -> list[str]:
|
||||
"""Extend the default `dir()` output to include configured field like data keys.
|
||||
|
||||
This enables editor auto-completion and interactive introspection, while hiding the internal
|
||||
`configured_data` dictionary.
|
||||
|
||||
This ensures the configured field like data values appear like native fields,
|
||||
in line with the base model's attribute behavior.
|
||||
"""
|
||||
base = super().__dir__()
|
||||
keys = set(base)
|
||||
# Expose configured data keys as attributes
|
||||
configured_keys = self.configured_data_keys()
|
||||
if configured_keys is not None:
|
||||
keys.update(configured_keys)
|
||||
# Explicitly hide the 'configured_data' internal dict
|
||||
keys.discard("configured_data")
|
||||
return sorted(keys)
|
||||
|
||||
def __eq__(self, other: Any) -> bool:
|
||||
"""Ensure equality comparison includes the contents of the `configured_data` dict.
|
||||
|
||||
Contents of the `configured_data` dict are in addition to the base model fields.
|
||||
"""
|
||||
if not isinstance(other, self.__class__):
|
||||
return NotImplemented
|
||||
# Compare all fields except `configured_data`
|
||||
if self.model_dump(exclude={"configured_data"}) != other.model_dump(
|
||||
exclude={"configured_data"}
|
||||
):
|
||||
return False
|
||||
# Compare `configured_data` explicitly
|
||||
return self.configured_data == other.configured_data
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
"""Retrieve the value of a field by key name.
|
||||
|
||||
@@ -116,9 +225,11 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Raises:
|
||||
KeyError: If the specified key does not exist.
|
||||
"""
|
||||
if key in self.model_fields:
|
||||
return getattr(self, key)
|
||||
raise KeyError(f"'{key}' not found in the record fields.")
|
||||
try:
|
||||
# Let getattr do the work
|
||||
return self.__getattr__(key)
|
||||
except:
|
||||
raise KeyError(f"'{key}' not found in the record fields.")
|
||||
|
||||
def __setitem__(self, key: str, value: Any) -> None:
|
||||
"""Set the value of a field by key name.
|
||||
@@ -130,9 +241,10 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Raises:
|
||||
KeyError: If the specified key does not exist in the fields.
|
||||
"""
|
||||
if key in self.model_fields:
|
||||
setattr(self, key, value)
|
||||
else:
|
||||
try:
|
||||
# Let setattr do the work
|
||||
self.__setattr__(key, value)
|
||||
except:
|
||||
raise KeyError(f"'{key}' is not a recognized field.")
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
@@ -144,9 +256,9 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Raises:
|
||||
KeyError: If the specified key does not exist in the fields.
|
||||
"""
|
||||
if key in self.model_fields:
|
||||
setattr(self, key, None) # Optional: set to None instead of deleting
|
||||
else:
|
||||
try:
|
||||
self.__delattr__(key)
|
||||
except:
|
||||
raise KeyError(f"'{key}' is not a recognized field.")
|
||||
|
||||
def __iter__(self) -> Iterator[str]:
|
||||
@@ -155,7 +267,7 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Returns:
|
||||
Iterator[str]: An iterator over field names.
|
||||
"""
|
||||
return iter(self.model_fields)
|
||||
return iter(self.record_keys_writable())
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return the number of fields in the data record.
|
||||
@@ -163,7 +275,7 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Returns:
|
||||
int: The number of defined fields.
|
||||
"""
|
||||
return len(self.model_fields)
|
||||
return len(self.record_keys_writable())
|
||||
|
||||
def __repr__(self) -> str:
|
||||
"""Provide a string representation of the data record.
|
||||
@@ -171,7 +283,7 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Returns:
|
||||
str: A string representation showing field names and their values.
|
||||
"""
|
||||
field_values = {field: getattr(self, field) for field in self.model_fields}
|
||||
field_values = {field: getattr(self, field) for field in self.__class__.model_fields}
|
||||
return f"{self.__class__.__name__}({field_values})"
|
||||
|
||||
def __getattr__(self, key: str) -> Any:
|
||||
@@ -186,8 +298,13 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Raises:
|
||||
AttributeError: If the field does not exist.
|
||||
"""
|
||||
if key in self.model_fields:
|
||||
if key in self.__class__.model_fields:
|
||||
return getattr(self, key)
|
||||
if key in self.configured_data.keys():
|
||||
return self.configured_data[key]
|
||||
configured_keys = self.configured_data_keys()
|
||||
if configured_keys is not None and key in configured_keys:
|
||||
return None
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
|
||||
|
||||
def __setattr__(self, key: str, value: Any) -> None:
|
||||
@@ -200,10 +317,14 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Raises:
|
||||
AttributeError: If the attribute/field does not exist.
|
||||
"""
|
||||
if key in self.model_fields:
|
||||
if key in self.__class__.model_fields:
|
||||
super().__setattr__(key, value)
|
||||
else:
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
|
||||
return
|
||||
configured_keys = self.configured_data_keys()
|
||||
if configured_keys is not None and key in configured_keys:
|
||||
self.configured_data[key] = value
|
||||
return
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{key}'")
|
||||
|
||||
def __delattr__(self, key: str) -> None:
|
||||
"""Delete an attribute by setting it to None if it exists as a field.
|
||||
@@ -214,10 +335,21 @@ class DataRecord(DataBase, MutableMapping):
|
||||
Raises:
|
||||
AttributeError: If the attribute/field does not exist.
|
||||
"""
|
||||
if key in self.model_fields:
|
||||
setattr(self, key, None) # Optional: set to None instead of deleting
|
||||
else:
|
||||
super().__delattr__(key)
|
||||
if key in self.__class__.model_fields:
|
||||
data: Optional[dict]
|
||||
if key == "configured_data":
|
||||
data = dict()
|
||||
else:
|
||||
data = None
|
||||
setattr(self, key, data)
|
||||
return
|
||||
if key in self.configured_data:
|
||||
del self.configured_data[key]
|
||||
return
|
||||
configured_keys = self.configured_data_keys()
|
||||
if configured_keys is not None and key in configured_keys:
|
||||
return
|
||||
super().__delattr__(key)
|
||||
|
||||
@classmethod
|
||||
def key_from_description(cls, description: str, threshold: float = 0.8) -> Optional[str]:
|
||||
@@ -352,10 +484,7 @@ class DataSequence(DataBase, MutableSequence):
|
||||
@property
|
||||
def record_keys(self) -> List[str]:
|
||||
"""Returns the keys of all fields in the data records."""
|
||||
key_list = []
|
||||
key_list.extend(list(self.record_class().model_fields.keys()))
|
||||
key_list.extend(list(self.record_class().__pydantic_decorators__.computed_fields.keys()))
|
||||
return key_list
|
||||
return self.record_class().record_keys()
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
@@ -369,7 +498,7 @@ class DataSequence(DataBase, MutableSequence):
|
||||
Returns:
|
||||
List[str]: A list of field keys that are writable in the data records.
|
||||
"""
|
||||
return list(self.record_class().model_fields.keys())
|
||||
return self.record_class().record_keys_writable()
|
||||
|
||||
@classmethod
|
||||
def record_class(cls) -> Type:
|
||||
@@ -707,6 +836,38 @@ class DataSequence(DataBase, MutableSequence):
|
||||
|
||||
return filtered_data
|
||||
|
||||
def key_to_value(self, key: str, target_datetime: DateTime) -> Optional[float]:
|
||||
"""Returns the value corresponding to the specified key that is nearest to the given datetime.
|
||||
|
||||
Args:
|
||||
key (str): The key of the attribute in DataRecord to extract.
|
||||
target_datetime (datetime): The datetime to search nearest to.
|
||||
|
||||
Returns:
|
||||
Optional[float]: The value nearest to the given datetime, or None if no valid records are found.
|
||||
|
||||
Raises:
|
||||
KeyError: If the specified key is not found in any of the DataRecords.
|
||||
"""
|
||||
self._validate_key(key)
|
||||
|
||||
# Filter out records with None or NaN values for the key
|
||||
valid_records = [
|
||||
record
|
||||
for record in self.records
|
||||
if record.date_time is not None
|
||||
and getattr(record, key, None) not in (None, float("nan"))
|
||||
]
|
||||
|
||||
if not valid_records:
|
||||
return None
|
||||
|
||||
# Find the record with datetime nearest to target_datetime
|
||||
target = to_datetime(target_datetime)
|
||||
nearest_record = min(valid_records, key=lambda r: abs(r.date_time - target))
|
||||
|
||||
return getattr(nearest_record, key, None)
|
||||
|
||||
def key_to_lists(
|
||||
self,
|
||||
key: str,
|
||||
@@ -868,6 +1029,11 @@ class DataSequence(DataBase, MutableSequence):
|
||||
KeyError: If the specified key is not found in any of the DataRecords.
|
||||
"""
|
||||
self._validate_key(key)
|
||||
|
||||
# General check on fill_method
|
||||
if fill_method not in ("ffill", "bfill", "linear", "none", None):
|
||||
raise ValueError(f"Unsupported fill method: {fill_method}")
|
||||
|
||||
# Ensure datetime objects are normalized
|
||||
start_datetime = to_datetime(start_datetime, to_maxtime=False) if start_datetime else None
|
||||
end_datetime = to_datetime(end_datetime, to_maxtime=False) if end_datetime else None
|
||||
@@ -880,7 +1046,7 @@ class DataSequence(DataBase, MutableSequence):
|
||||
values_len = len(values)
|
||||
|
||||
if values_len < 1:
|
||||
# No values, assume at at least one value set to None
|
||||
# No values, assume at least one value set to None
|
||||
if start_datetime is not None:
|
||||
dates.append(start_datetime - interval)
|
||||
else:
|
||||
@@ -902,6 +1068,11 @@ class DataSequence(DataBase, MutableSequence):
|
||||
# Truncate all values before latest value before start_datetime
|
||||
dates = dates[start_index - 1 :]
|
||||
values = values[start_index - 1 :]
|
||||
# We have a start_datetime, align to start datetime
|
||||
resample_origin = start_datetime
|
||||
else:
|
||||
# We do not have a start_datetime, align resample buckets to midnight of first day
|
||||
resample_origin = "start_day"
|
||||
|
||||
if end_datetime is not None:
|
||||
if compare_datetimes(dates[-1], end_datetime).lt:
|
||||
@@ -922,7 +1093,7 @@ class DataSequence(DataBase, MutableSequence):
|
||||
if fill_method is None:
|
||||
fill_method = "linear"
|
||||
# Resample the series to the specified interval
|
||||
resampled = series.resample(interval, origin="start").first()
|
||||
resampled = series.resample(interval, origin=resample_origin).first()
|
||||
if fill_method == "linear":
|
||||
resampled = resampled.interpolate(method="linear")
|
||||
elif fill_method == "ffill":
|
||||
@@ -936,7 +1107,7 @@ class DataSequence(DataBase, MutableSequence):
|
||||
if fill_method is None:
|
||||
fill_method = "ffill"
|
||||
# Resample the series to the specified interval
|
||||
resampled = series.resample(interval, origin="start").first()
|
||||
resampled = series.resample(interval, origin=resample_origin).first()
|
||||
if fill_method == "ffill":
|
||||
resampled = resampled.ffill()
|
||||
elif fill_method == "bfill":
|
||||
@@ -944,12 +1115,24 @@ class DataSequence(DataBase, MutableSequence):
|
||||
elif fill_method != "none":
|
||||
raise ValueError(f"Unsupported fill method for non-numeric data: {fill_method}")
|
||||
|
||||
logger.debug(
|
||||
"Resampled for '{}' with length {}: {}...{}",
|
||||
key,
|
||||
len(resampled),
|
||||
resampled[:10],
|
||||
resampled[-10:],
|
||||
)
|
||||
|
||||
# Convert the resampled series to a NumPy array
|
||||
if start_datetime is not None and len(resampled) > 0:
|
||||
resampled = resampled.truncate(before=start_datetime)
|
||||
if end_datetime is not None and len(resampled) > 0:
|
||||
resampled = resampled.truncate(after=end_datetime.subtract(seconds=1))
|
||||
array = resampled.values
|
||||
logger.debug(
|
||||
"Array for '{}' with length {}: {}...{}", key, len(array), array[:10], array[-10:]
|
||||
)
|
||||
|
||||
return array
|
||||
|
||||
def to_dataframe(
|
||||
@@ -1197,7 +1380,7 @@ class DataImportMixin:
|
||||
the values. `ìnterval` may be used to define the fixed time interval between two values.
|
||||
|
||||
On import `self.update_value(datetime, key, value)` is called which has to be provided.
|
||||
Also `self.start_datetime` may be necessary as a default in case `start_datetime`is not given.
|
||||
Also `self.ems_start_datetime` may be necessary as a default in case `start_datetime`is not given.
|
||||
"""
|
||||
|
||||
# Attributes required but defined elsehere.
|
||||
@@ -1315,7 +1498,7 @@ class DataImportMixin:
|
||||
raise ValueError(f"Invalid start_datetime in import data: {e}")
|
||||
|
||||
if start_datetime is None:
|
||||
start_datetime = self.start_datetime # type: ignore
|
||||
start_datetime = self.ems_start_datetime # type: ignore
|
||||
|
||||
if "interval" in import_data:
|
||||
try:
|
||||
@@ -1406,7 +1589,7 @@ class DataImportMixin:
|
||||
raise ValueError(f"Invalid datetime index in DataFrame: {e}")
|
||||
else:
|
||||
if start_datetime is None:
|
||||
start_datetime = self.start_datetime # type: ignore
|
||||
start_datetime = self.ems_start_datetime # type: ignore
|
||||
has_datetime_index = False
|
||||
|
||||
# Filter columns based on key_prefix and record_keys_writable
|
||||
@@ -1463,7 +1646,7 @@ class DataImportMixin:
|
||||
|
||||
If start_datetime and or interval is given in the JSON dict it will be used. Otherwise
|
||||
the given parameters are used. If None is given start_datetime defaults to
|
||||
'self.start_datetime' and interval defaults to 1 hour.
|
||||
'self.ems_start_datetime' and interval defaults to 1 hour.
|
||||
|
||||
Args:
|
||||
json_str (str): The JSON string containing the generic data.
|
||||
@@ -1538,7 +1721,7 @@ class DataImportMixin:
|
||||
|
||||
If start_datetime and or interval is given in the JSON dict it will be used. Otherwise
|
||||
the given parameters are used. If None is given start_datetime defaults to
|
||||
'self.start_datetime' and interval defaults to 1 hour.
|
||||
'self.ems_start_datetime' and interval defaults to 1 hour.
|
||||
|
||||
Args:
|
||||
import_file_path (Path): The path to the JSON file containing the generic data.
|
||||
@@ -1749,7 +1932,12 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
|
||||
force_update (bool, optional): If True, forces the providers to update the data even if still cached.
|
||||
"""
|
||||
for provider in self.providers:
|
||||
provider.update_data(force_enable=force_enable, force_update=force_update)
|
||||
try:
|
||||
provider.update_data(force_enable=force_enable, force_update=force_update)
|
||||
except Exception as ex:
|
||||
error = f"Provider {provider.provider_id()} fails on update - enabled={provider.enabled()}, force_enable={force_enable}, force_update={force_update}: {ex}"
|
||||
logger.error(error)
|
||||
raise RuntimeError(error)
|
||||
|
||||
def key_to_series(
|
||||
self,
|
||||
@@ -1854,7 +2042,7 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
|
||||
) -> pd.DataFrame:
|
||||
"""Retrieve a dataframe indexed by fixed time intervals for specified keys from the data in each DataProvider.
|
||||
|
||||
Generates a pandas DataFrame using the NumPy arrays for each specified key, ensuring a common time index..
|
||||
Generates a pandas DataFrame using the NumPy arrays for each specified key, ensuring a common time index.
|
||||
|
||||
Args:
|
||||
keys (list[str]): A list of field names to retrieve.
|
||||
@@ -1903,8 +2091,15 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
|
||||
end_datetime.add(seconds=1)
|
||||
|
||||
# Create a DatetimeIndex based on start, end, and interval
|
||||
if start_datetime is None or end_datetime is None:
|
||||
raise ValueError(
|
||||
f"Can not determine datetime range. Got '{start_datetime}'..'{end_datetime}'."
|
||||
)
|
||||
reference_index = pd.date_range(
|
||||
start=start_datetime, end=end_datetime, freq=interval, inclusive="left"
|
||||
start=start_datetime,
|
||||
end=end_datetime,
|
||||
freq=interval,
|
||||
inclusive="left",
|
||||
)
|
||||
|
||||
data = {}
|
||||
|
||||
1914
src/akkudoktoreos/core/emplan.py
Normal file
1914
src/akkudoktoreos/core/emplan.py
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,123 +1,50 @@
|
||||
import traceback
|
||||
from typing import Any, ClassVar, Optional
|
||||
from asyncio import Lock, get_running_loop
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
from typing import ClassVar, Optional
|
||||
|
||||
import numpy as np
|
||||
from loguru import logger
|
||||
from numpydantic import NDArray, Shape
|
||||
from pendulum import DateTime
|
||||
from pydantic import ConfigDict, Field, computed_field, field_validator, model_validator
|
||||
from typing_extensions import Self
|
||||
from pydantic import computed_field
|
||||
|
||||
from akkudoktoreos.core.cache import CacheUntilUpdateStore
|
||||
from akkudoktoreos.core.cache import CacheEnergyManagementStore
|
||||
from akkudoktoreos.core.coreabc import ConfigMixin, PredictionMixin, SingletonMixin
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel, PydanticBaseModel
|
||||
from akkudoktoreos.devices.battery import Battery
|
||||
from akkudoktoreos.devices.generic import HomeAppliance
|
||||
from akkudoktoreos.devices.inverter import Inverter
|
||||
from akkudoktoreos.utils.datetimeutil import compare_datetimes, to_datetime
|
||||
from akkudoktoreos.utils.utils import NumpyEncoder
|
||||
from akkudoktoreos.core.emplan import EnergyManagementPlan
|
||||
from akkudoktoreos.core.emsettings import EnergyManagementMode
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.optimization.genetic.genetic import GeneticOptimization
|
||||
from akkudoktoreos.optimization.genetic.geneticparams import (
|
||||
GeneticOptimizationParameters,
|
||||
)
|
||||
from akkudoktoreos.optimization.genetic.geneticsolution import GeneticSolution
|
||||
from akkudoktoreos.optimization.optimization import OptimizationSolution
|
||||
from akkudoktoreos.utils.datetimeutil import DateTime, compare_datetimes, to_datetime
|
||||
|
||||
|
||||
class EnergyManagementParameters(ParametersBaseModel):
|
||||
pv_prognose_wh: list[float] = Field(
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals."
|
||||
)
|
||||
strompreis_euro_pro_wh: list[float] = Field(
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals."
|
||||
)
|
||||
einspeiseverguetung_euro_pro_wh: list[float] | float = Field(
|
||||
description="A float or array of floats representing the feed-in compensation in euros per watt-hour."
|
||||
)
|
||||
preis_euro_pro_wh_akku: float = Field(
|
||||
description="A float representing the cost of battery energy per watt-hour."
|
||||
)
|
||||
gesamtlast: list[float] = Field(
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals."
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_list_length(self) -> Self:
|
||||
pv_prognose_length = len(self.pv_prognose_wh)
|
||||
if (
|
||||
pv_prognose_length != len(self.strompreis_euro_pro_wh)
|
||||
or pv_prognose_length != len(self.gesamtlast)
|
||||
or (
|
||||
isinstance(self.einspeiseverguetung_euro_pro_wh, list)
|
||||
and pv_prognose_length != len(self.einspeiseverguetung_euro_pro_wh)
|
||||
)
|
||||
):
|
||||
raise ValueError("Input lists have different lengths")
|
||||
return self
|
||||
|
||||
|
||||
class SimulationResult(ParametersBaseModel):
|
||||
"""This object contains the results of the simulation and provides insights into various parameters over the entire forecast period."""
|
||||
|
||||
Last_Wh_pro_Stunde: list[Optional[float]] = Field(description="TBD")
|
||||
EAuto_SoC_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The state of charge of the EV for each hour."
|
||||
)
|
||||
Einnahmen_Euro_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The revenue from grid feed-in or other sources in euros per hour."
|
||||
)
|
||||
Gesamt_Verluste: float = Field(
|
||||
description="The total losses in watt-hours over the entire period."
|
||||
)
|
||||
Gesamtbilanz_Euro: float = Field(
|
||||
description="The total balance of revenues minus costs in euros."
|
||||
)
|
||||
Gesamteinnahmen_Euro: float = Field(description="The total revenues in euros.")
|
||||
Gesamtkosten_Euro: float = Field(description="The total costs in euros.")
|
||||
Home_appliance_wh_per_hour: list[Optional[float]] = Field(
|
||||
description="The energy consumption of a household appliance in watt-hours per hour."
|
||||
)
|
||||
Kosten_Euro_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The costs in euros per hour."
|
||||
)
|
||||
Netzbezug_Wh_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The grid energy drawn in watt-hours per hour."
|
||||
)
|
||||
Netzeinspeisung_Wh_pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The energy fed into the grid in watt-hours per hour."
|
||||
)
|
||||
Verluste_Pro_Stunde: list[Optional[float]] = Field(
|
||||
description="The losses in watt-hours per hour."
|
||||
)
|
||||
akku_soc_pro_stunde: list[Optional[float]] = Field(
|
||||
description="The state of charge of the battery (not the EV) in percentage per hour."
|
||||
)
|
||||
Electricity_price: list[Optional[float]] = Field(
|
||||
description="Used Electricity Price, including predictions"
|
||||
)
|
||||
|
||||
@field_validator(
|
||||
"Last_Wh_pro_Stunde",
|
||||
"Netzeinspeisung_Wh_pro_Stunde",
|
||||
"akku_soc_pro_stunde",
|
||||
"Netzbezug_Wh_pro_Stunde",
|
||||
"Kosten_Euro_pro_Stunde",
|
||||
"Einnahmen_Euro_pro_Stunde",
|
||||
"EAuto_SoC_pro_Stunde",
|
||||
"Verluste_Pro_Stunde",
|
||||
"Home_appliance_wh_per_hour",
|
||||
"Electricity_price",
|
||||
mode="before",
|
||||
)
|
||||
def convert_numpy(cls, field: Any) -> Any:
|
||||
return NumpyEncoder.convert_numpy(field)[0]
|
||||
# The executor to execute the CPU heavy energy management run
|
||||
executor = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
|
||||
class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBaseModel):
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
"""Energy management."""
|
||||
|
||||
# Start datetime.
|
||||
_start_datetime: ClassVar[Optional[DateTime]] = None
|
||||
|
||||
# last run datetime. Used by energy management task
|
||||
_last_datetime: ClassVar[Optional[DateTime]] = None
|
||||
_last_run_datetime: ClassVar[Optional[DateTime]] = None
|
||||
|
||||
# energy management plan of latest energy management run with optimization
|
||||
_plan: ClassVar[Optional[EnergyManagementPlan]] = None
|
||||
|
||||
# opimization solution of the latest energy management run
|
||||
_optimization_solution: ClassVar[Optional[OptimizationSolution]] = None
|
||||
|
||||
# Solution of the genetic algorithm of latest energy management run with optimization
|
||||
# For classic API
|
||||
_genetic_solution: ClassVar[Optional[GeneticSolution]] = None
|
||||
|
||||
# energy management lock (for energy management run)
|
||||
_run_lock: ClassVar[Lock] = Lock()
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
@@ -127,9 +54,15 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
|
||||
EnergyManagement.set_start_datetime()
|
||||
return EnergyManagement._start_datetime
|
||||
|
||||
@computed_field # type: ignore[prop-decorator]
|
||||
@property
|
||||
def last_run_datetime(self) -> Optional[DateTime]:
|
||||
"""The datetime the last energy management was run."""
|
||||
return EnergyManagement._last_run_datetime
|
||||
|
||||
@classmethod
|
||||
def set_start_datetime(cls, start_datetime: Optional[DateTime] = None) -> DateTime:
|
||||
"""Set the start datetime for the next energy management cycle.
|
||||
"""Set the start datetime for the next energy management run.
|
||||
|
||||
If no datetime is provided, the current datetime is used.
|
||||
|
||||
@@ -148,142 +81,208 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
|
||||
cls._start_datetime = start_datetime.set(minute=0, second=0, microsecond=0)
|
||||
return cls._start_datetime
|
||||
|
||||
# -------------------------
|
||||
# TODO: Take from prediction
|
||||
# -------------------------
|
||||
@classmethod
|
||||
def plan(cls) -> Optional[EnergyManagementPlan]:
|
||||
"""Get the latest energy management plan.
|
||||
|
||||
load_energy_array: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals.",
|
||||
)
|
||||
pv_prediction_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals.",
|
||||
)
|
||||
elect_price_hourly: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals.",
|
||||
)
|
||||
elect_revenue_per_hour_arr: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the feed-in compensation in euros per watt-hour.",
|
||||
)
|
||||
Returns:
|
||||
Optional[EnergyManagementPlan]: The latest energy management plan or None.
|
||||
"""
|
||||
return cls._plan
|
||||
|
||||
# -------------------------
|
||||
# TODO: Move to devices
|
||||
# -------------------------
|
||||
@classmethod
|
||||
def optimization_solution(cls) -> Optional[OptimizationSolution]:
|
||||
"""Get the latest optimization solution.
|
||||
|
||||
battery: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
ev: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
home_appliance: Optional[HomeAppliance] = Field(default=None, description="TBD.")
|
||||
inverter: Optional[Inverter] = Field(default=None, description="TBD.")
|
||||
Returns:
|
||||
Optional[OptimizationSolution]: The latest optimization solution.
|
||||
"""
|
||||
return cls._optimization_solution
|
||||
|
||||
# -------------------------
|
||||
# TODO: Move to devices
|
||||
# -------------------------
|
||||
@classmethod
|
||||
def genetic_solution(cls) -> Optional[GeneticSolution]:
|
||||
"""Get the latest solution of the genetic algorithm.
|
||||
|
||||
ac_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
Returns:
|
||||
Optional[GeneticSolution]: The latest solution of the genetic algorithm.
|
||||
"""
|
||||
return cls._genetic_solution
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def set_parameters(
|
||||
self,
|
||||
parameters: EnergyManagementParameters,
|
||||
ev: Optional[Battery] = None,
|
||||
home_appliance: Optional[HomeAppliance] = None,
|
||||
inverter: Optional[Inverter] = None,
|
||||
) -> None:
|
||||
self.load_energy_array = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prediction_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.elect_price_hourly = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.elect_revenue_per_hour_arr = (
|
||||
parameters.einspeiseverguetung_euro_pro_wh
|
||||
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
||||
else np.full(
|
||||
len(self.load_energy_array), parameters.einspeiseverguetung_euro_pro_wh, float
|
||||
)
|
||||
)
|
||||
if inverter:
|
||||
self.battery = inverter.battery
|
||||
else:
|
||||
self.battery = None
|
||||
self.ev = ev
|
||||
self.home_appliance = home_appliance
|
||||
self.inverter = inverter
|
||||
self.ac_charge_hours = np.full(self.config.prediction.hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction.hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction.hours, 0.0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.battery:
|
||||
self.battery.set_discharge_per_hour(ds)
|
||||
|
||||
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ac_charge_hours = ds
|
||||
|
||||
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.dc_charge_hours = ds
|
||||
|
||||
def set_ev_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ev_charge_hours = ds
|
||||
|
||||
def set_home_appliance_start(self, ds: int, global_start_hour: int = 0) -> None:
|
||||
if self.home_appliance:
|
||||
self.home_appliance.set_starting_time(ds, global_start_hour=global_start_hour)
|
||||
|
||||
def reset(self) -> None:
|
||||
if self.ev:
|
||||
self.ev.reset()
|
||||
if self.battery:
|
||||
self.battery.reset()
|
||||
|
||||
def run(
|
||||
self,
|
||||
start_hour: Optional[int] = None,
|
||||
@classmethod
|
||||
def _run(
|
||||
cls,
|
||||
start_datetime: Optional[DateTime] = None,
|
||||
mode: Optional[EnergyManagementMode] = None,
|
||||
genetic_parameters: Optional[GeneticOptimizationParameters] = None,
|
||||
genetic_individuals: Optional[int] = None,
|
||||
genetic_seed: Optional[int] = None,
|
||||
force_enable: Optional[bool] = False,
|
||||
force_update: Optional[bool] = False,
|
||||
) -> None:
|
||||
"""Run energy management.
|
||||
"""Run the energy management.
|
||||
|
||||
Sets `start_datetime` to current hour, updates the configuration and the prediction, and
|
||||
starts simulation at current hour.
|
||||
This method initializes the energy management run by setting its
|
||||
start datetime, updating predictions, and optionally starting
|
||||
optimization depending on the selected mode or configuration.
|
||||
|
||||
Args:
|
||||
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
|
||||
to now.
|
||||
force_enable (bool, optional): If True, forces to update even if disabled. This
|
||||
is mostly relevant to prediction providers.
|
||||
force_update (bool, optional): If True, forces to update the data even if still cached.
|
||||
start_datetime (DateTime, optional): The starting timestamp
|
||||
of the energy management run. Defaults to the current datetime
|
||||
if not provided.
|
||||
mode (EnergyManagementMode, optional): The management mode to use. Must be one of:
|
||||
- "OPTIMIZATION": Runs the optimization process.
|
||||
- "PREDICTION": Updates the forecast without optimization.
|
||||
|
||||
Defaults to the mode defined in the current configuration.
|
||||
genetic_parameters (GeneticOptimizationParameters, optional): The
|
||||
parameter set for the genetic algorithm. If not provided, it will
|
||||
be constructed based on the current configuration and predictions.
|
||||
genetic_individuals (int, optional): The number of individuals for the
|
||||
genetic algorithm. Defaults to the algorithm's internal default (400)
|
||||
if not specified.
|
||||
genetic_seed (int, optional): The seed for the genetic algorithm. Defaults
|
||||
to the algorithm's internal random seed if not specified.
|
||||
force_enable (bool, optional): If True, bypasses any disabled state
|
||||
to force the update process. This is mostly applicable to
|
||||
prediction providers.
|
||||
force_update (bool, optional): If True, forces data to be refreshed
|
||||
even if a cached version is still valid.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
# Throw away any cached results of the last run.
|
||||
CacheUntilUpdateStore().clear()
|
||||
self.set_start_hour(start_hour=start_hour)
|
||||
# Ensure there is only one optimization/ energy management run at a time
|
||||
if mode not in (None, "PREDICTION", "OPTIMIZATION"):
|
||||
raise ValueError(f"Unknown energy management mode {mode}.")
|
||||
|
||||
# Check for run definitions
|
||||
if self.start_datetime is None:
|
||||
error_msg = "Start datetime unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.prediction.hours is None:
|
||||
error_msg = "Prediction hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.optimization.hours is None:
|
||||
error_msg = "Optimization hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
logger.info("Starting energy management run.")
|
||||
|
||||
self.prediction.update_data(force_enable=force_enable, force_update=force_update)
|
||||
# TODO: Create optimisation problem that calls into devices.update_data() for simulations.
|
||||
# Remember/ set the start datetime of this energy management run.
|
||||
# None leads
|
||||
cls.set_start_datetime(start_datetime)
|
||||
|
||||
logger.info("Energy management run (crippled version - prediction update only)")
|
||||
# Throw away any memory cached results of the last energy management run.
|
||||
CacheEnergyManagementStore().clear()
|
||||
|
||||
def manage_energy(self) -> None:
|
||||
if mode is None:
|
||||
mode = cls.config.ems.mode
|
||||
if mode is None or mode == "PREDICTION":
|
||||
# Update the predictions
|
||||
cls.prediction.update_data(force_enable=force_enable, force_update=force_update)
|
||||
logger.info("Energy management run done (predictions updated)")
|
||||
return
|
||||
|
||||
# Prepare optimization parameters
|
||||
# This also creates default configurations for missing values and updates the predictions
|
||||
logger.info(
|
||||
"Starting energy management prediction update and optimzation parameter preparation."
|
||||
)
|
||||
if genetic_parameters is None:
|
||||
genetic_parameters = GeneticOptimizationParameters.prepare()
|
||||
|
||||
if not genetic_parameters:
|
||||
logger.error(
|
||||
"Energy management run canceled. Could not prepare optimisation parameters."
|
||||
)
|
||||
return
|
||||
|
||||
# Take values from config if not given
|
||||
if genetic_individuals is None:
|
||||
genetic_individuals = cls.config.optimization.genetic.individuals
|
||||
if genetic_seed is None:
|
||||
genetic_seed = cls.config.optimization.genetic.seed
|
||||
|
||||
if cls._start_datetime is None: # Make mypy happy - already set by us
|
||||
raise RuntimeError("Start datetime not set.")
|
||||
|
||||
logger.info("Starting energy management optimization.")
|
||||
try:
|
||||
optimization = GeneticOptimization(
|
||||
verbose=bool(cls.config.server.verbose),
|
||||
fixed_seed=genetic_seed,
|
||||
)
|
||||
solution = optimization.optimierung_ems(
|
||||
start_hour=cls._start_datetime.hour,
|
||||
parameters=genetic_parameters,
|
||||
ngen=genetic_individuals,
|
||||
)
|
||||
except:
|
||||
logger.exception("Energy management optimization failed.")
|
||||
return
|
||||
|
||||
# Make genetic solution public
|
||||
cls._genetic_solution = solution
|
||||
|
||||
# Make optimization solution public
|
||||
cls._optimization_solution = solution.optimization_solution()
|
||||
|
||||
# Make plan public
|
||||
cls._plan = solution.energy_management_plan()
|
||||
|
||||
logger.debug("Energy management genetic solution:\n{}", cls._genetic_solution)
|
||||
logger.debug("Energy management optimization solution:\n{}", cls._optimization_solution)
|
||||
logger.debug("Energy management plan:\n{}", cls._plan)
|
||||
logger.info("Energy management run done (optimization updated)")
|
||||
|
||||
async def run(
|
||||
self,
|
||||
start_datetime: Optional[DateTime] = None,
|
||||
mode: Optional[EnergyManagementMode] = None,
|
||||
genetic_parameters: Optional[GeneticOptimizationParameters] = None,
|
||||
genetic_individuals: Optional[int] = None,
|
||||
genetic_seed: Optional[int] = None,
|
||||
force_enable: Optional[bool] = False,
|
||||
force_update: Optional[bool] = False,
|
||||
) -> None:
|
||||
"""Run the energy management.
|
||||
|
||||
This method initializes the energy management run by setting its
|
||||
start datetime, updating predictions, and optionally starting
|
||||
optimization depending on the selected mode or configuration.
|
||||
|
||||
Args:
|
||||
start_datetime (DateTime, optional): The starting timestamp
|
||||
of the energy management run. Defaults to the current datetime
|
||||
if not provided.
|
||||
mode (EnergyManagementMode, optional): The management mode to use. Must be one of:
|
||||
- "OPTIMIZATION": Runs the optimization process.
|
||||
- "PREDICTION": Updates the forecast without optimization.
|
||||
|
||||
Defaults to the mode defined in the current configuration.
|
||||
genetic_parameters (GeneticOptimizationParameters, optional): The
|
||||
parameter set for the genetic algorithm. If not provided, it will
|
||||
be constructed based on the current configuration and predictions.
|
||||
genetic_individuals (int, optional): The number of individuals for the
|
||||
genetic algorithm. Defaults to the algorithm's internal default (400)
|
||||
if not specified.
|
||||
genetic_seed (int, optional): The seed for the genetic algorithm. Defaults
|
||||
to the algorithm's internal random seed if not specified.
|
||||
force_enable (bool, optional): If True, bypasses any disabled state
|
||||
to force the update process. This is mostly applicable to
|
||||
prediction providers.
|
||||
force_update (bool, optional): If True, forces data to be refreshed
|
||||
even if a cached version is still valid.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
async with self._run_lock:
|
||||
loop = get_running_loop()
|
||||
# Create a partial function with parameters "baked in"
|
||||
func = partial(
|
||||
EnergyManagement._run,
|
||||
start_datetime=start_datetime,
|
||||
mode=mode,
|
||||
genetic_parameters=genetic_parameters,
|
||||
genetic_individuals=genetic_individuals,
|
||||
genetic_seed=genetic_seed,
|
||||
force_enable=force_enable,
|
||||
force_update=force_update,
|
||||
)
|
||||
# Run optimization in background thread to avoid blocking event loop
|
||||
await loop.run_in_executor(executor, func)
|
||||
|
||||
async def manage_energy(self) -> None:
|
||||
"""Repeating task for managing energy.
|
||||
|
||||
This task should be executed by the server regularly (e.g., every 10 seconds)
|
||||
@@ -304,13 +303,13 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
|
||||
current_datetime = to_datetime()
|
||||
interval = self.config.ems.interval # interval maybe changed in between
|
||||
|
||||
if EnergyManagement._last_datetime is None:
|
||||
if EnergyManagement._last_run_datetime is None:
|
||||
# Never run before
|
||||
try:
|
||||
# Remember energy run datetime.
|
||||
EnergyManagement._last_datetime = current_datetime
|
||||
EnergyManagement._last_run_datetime = current_datetime
|
||||
# Try to run a first energy management. May fail due to config incomplete.
|
||||
self.run()
|
||||
await self.run()
|
||||
except Exception as e:
|
||||
trace = "".join(traceback.TracebackException.from_exception(e).format())
|
||||
message = f"EOS init: {e}\n{trace}"
|
||||
@@ -322,14 +321,14 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
|
||||
return
|
||||
|
||||
if (
|
||||
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
|
||||
compare_datetimes(current_datetime, EnergyManagement._last_run_datetime).time_diff
|
||||
< interval
|
||||
):
|
||||
# Wait for next run
|
||||
return
|
||||
|
||||
try:
|
||||
self.run()
|
||||
await self.run()
|
||||
except Exception as e:
|
||||
trace = "".join(traceback.TracebackException.from_exception(e).format())
|
||||
message = f"EOS run: {e}\n{trace}"
|
||||
@@ -337,187 +336,13 @@ class EnergyManagement(SingletonMixin, ConfigMixin, PredictionMixin, PydanticBas
|
||||
|
||||
# Remember the energy management run - keep on interval even if we missed some intervals
|
||||
while (
|
||||
compare_datetimes(current_datetime, EnergyManagement._last_datetime).time_diff
|
||||
compare_datetimes(current_datetime, EnergyManagement._last_run_datetime).time_diff
|
||||
>= interval
|
||||
):
|
||||
EnergyManagement._last_datetime = EnergyManagement._last_datetime.add(seconds=interval)
|
||||
|
||||
def set_start_hour(self, start_hour: Optional[int] = None) -> None:
|
||||
"""Sets start datetime to given hour.
|
||||
|
||||
Args:
|
||||
start_hour (int, optional): Hour to take as start time for the energy management. Defaults
|
||||
to now.
|
||||
"""
|
||||
if start_hour is None:
|
||||
self.set_start_datetime()
|
||||
else:
|
||||
start_datetime = to_datetime().set(hour=start_hour, minute=0, second=0, microsecond=0)
|
||||
self.set_start_datetime(start_datetime)
|
||||
|
||||
def simulate_start_now(self) -> dict[str, Any]:
|
||||
start_hour = to_datetime().now().hour
|
||||
return self.simulate(start_hour)
|
||||
|
||||
def simulate(self, start_hour: int) -> dict[str, Any]:
|
||||
"""Simulate energy usage and costs for the given start hour.
|
||||
|
||||
akku_soc_pro_stunde begin of the hour, initial hour state!
|
||||
last_wh_pro_stunde integral of last hour (end state)
|
||||
"""
|
||||
# Check for simulation integrity
|
||||
required_attrs = [
|
||||
"load_energy_array",
|
||||
"pv_prediction_wh",
|
||||
"elect_price_hourly",
|
||||
"ev_charge_hours",
|
||||
"ac_charge_hours",
|
||||
"dc_charge_hours",
|
||||
"elect_revenue_per_hour_arr",
|
||||
]
|
||||
missing_data = [
|
||||
attr.replace("_", " ").title() for attr in required_attrs if getattr(self, attr) is None
|
||||
]
|
||||
|
||||
if missing_data:
|
||||
logger.error("Mandatory data missing - %s", ", ".join(missing_data))
|
||||
raise ValueError(f"Mandatory data missing: {', '.join(missing_data)}")
|
||||
|
||||
# Pre-fetch data
|
||||
load_energy_array = np.array(self.load_energy_array)
|
||||
pv_prediction_wh = np.array(self.pv_prediction_wh)
|
||||
elect_price_hourly = np.array(self.elect_price_hourly)
|
||||
ev_charge_hours = np.array(self.ev_charge_hours)
|
||||
ac_charge_hours = np.array(self.ac_charge_hours)
|
||||
dc_charge_hours = np.array(self.dc_charge_hours)
|
||||
elect_revenue_per_hour_arr = np.array(self.elect_revenue_per_hour_arr)
|
||||
|
||||
# Fetch objects
|
||||
battery = self.battery
|
||||
if battery is None:
|
||||
raise ValueError(f"battery not set: {battery}")
|
||||
ev = self.ev
|
||||
home_appliance = self.home_appliance
|
||||
inverter = self.inverter
|
||||
|
||||
if not (len(load_energy_array) == len(pv_prediction_wh) == len(elect_price_hourly)):
|
||||
error_msg = f"Array sizes do not match: Load Curve = {len(load_energy_array)}, PV Forecast = {len(pv_prediction_wh)}, Electricity Price = {len(elect_price_hourly)}"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
end_hour = len(load_energy_array)
|
||||
total_hours = end_hour - start_hour
|
||||
|
||||
# Pre-allocate arrays for the results, optimized for speed
|
||||
loads_energy_per_hour = np.full((total_hours), np.nan)
|
||||
feedin_energy_per_hour = np.full((total_hours), np.nan)
|
||||
consumption_energy_per_hour = np.full((total_hours), np.nan)
|
||||
costs_per_hour = np.full((total_hours), np.nan)
|
||||
revenue_per_hour = np.full((total_hours), np.nan)
|
||||
soc_per_hour = np.full((total_hours), np.nan)
|
||||
soc_ev_per_hour = np.full((total_hours), np.nan)
|
||||
losses_wh_per_hour = np.full((total_hours), np.nan)
|
||||
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
|
||||
electricity_price_per_hour = np.full((total_hours), np.nan)
|
||||
|
||||
# Set initial state
|
||||
soc_per_hour[0] = battery.current_soc_percentage()
|
||||
if ev:
|
||||
soc_ev_per_hour[0] = ev.current_soc_percentage()
|
||||
|
||||
for hour in range(start_hour, end_hour):
|
||||
hour_idx = hour - start_hour
|
||||
|
||||
# save begin states
|
||||
soc_per_hour[hour_idx] = battery.current_soc_percentage()
|
||||
|
||||
if ev:
|
||||
soc_ev_per_hour[hour_idx] = ev.current_soc_percentage()
|
||||
|
||||
# Accumulate loads and PV generation
|
||||
consumption = load_energy_array[hour]
|
||||
losses_wh_per_hour[hour_idx] = 0.0
|
||||
|
||||
# Home appliances
|
||||
if home_appliance:
|
||||
ha_load = home_appliance.get_load_for_hour(hour)
|
||||
consumption += ha_load
|
||||
home_appliance_wh_per_hour[hour_idx] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if ev and ev_charge_hours[hour] > 0:
|
||||
loaded_energy_ev, verluste_eauto = ev.charge_energy(
|
||||
None, hour, relative_power=ev_charge_hours[hour]
|
||||
)
|
||||
consumption += loaded_energy_ev
|
||||
losses_wh_per_hour[hour_idx] += verluste_eauto
|
||||
|
||||
# Process inverter logic
|
||||
energy_feedin_grid_actual = energy_consumption_grid_actual = losses = eigenverbrauch = (
|
||||
0.0
|
||||
EnergyManagement._last_run_datetime = EnergyManagement._last_run_datetime.add(
|
||||
seconds=interval
|
||||
)
|
||||
|
||||
hour_ac_charge = ac_charge_hours[hour]
|
||||
hour_dc_charge = dc_charge_hours[hour]
|
||||
hourly_electricity_price = elect_price_hourly[hour]
|
||||
hourly_energy_revenue = elect_revenue_per_hour_arr[hour]
|
||||
|
||||
battery.set_charge_allowed_for_hour(hour_dc_charge, hour)
|
||||
|
||||
if inverter:
|
||||
energy_produced = pv_prediction_wh[hour]
|
||||
(
|
||||
energy_feedin_grid_actual,
|
||||
energy_consumption_grid_actual,
|
||||
losses,
|
||||
eigenverbrauch,
|
||||
) = inverter.process_energy(energy_produced, consumption, hour)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if hour_ac_charge > 0.0:
|
||||
battery.set_charge_allowed_for_hour(1, hour)
|
||||
battery_charged_energy_actual, battery_losses_actual = battery.charge_energy(
|
||||
None, hour, relative_power=hour_ac_charge
|
||||
)
|
||||
|
||||
total_battery_energy = battery_charged_energy_actual + battery_losses_actual
|
||||
consumption += total_battery_energy
|
||||
energy_consumption_grid_actual += total_battery_energy
|
||||
losses_wh_per_hour[hour_idx] += battery_losses_actual
|
||||
|
||||
# Update hourly arrays
|
||||
feedin_energy_per_hour[hour_idx] = energy_feedin_grid_actual
|
||||
consumption_energy_per_hour[hour_idx] = energy_consumption_grid_actual
|
||||
losses_wh_per_hour[hour_idx] += losses
|
||||
loads_energy_per_hour[hour_idx] = consumption
|
||||
electricity_price_per_hour[hour_idx] = hourly_electricity_price
|
||||
|
||||
# Financial calculations
|
||||
costs_per_hour[hour_idx] = energy_consumption_grid_actual * hourly_electricity_price
|
||||
revenue_per_hour[hour_idx] = energy_feedin_grid_actual * hourly_energy_revenue
|
||||
|
||||
total_cost = np.nansum(costs_per_hour)
|
||||
total_losses = np.nansum(losses_wh_per_hour)
|
||||
total_revenue = np.nansum(revenue_per_hour)
|
||||
|
||||
# Prepare output dictionary
|
||||
return {
|
||||
"Last_Wh_pro_Stunde": loads_energy_per_hour,
|
||||
"Netzeinspeisung_Wh_pro_Stunde": feedin_energy_per_hour,
|
||||
"Netzbezug_Wh_pro_Stunde": consumption_energy_per_hour,
|
||||
"Kosten_Euro_pro_Stunde": costs_per_hour,
|
||||
"akku_soc_pro_stunde": soc_per_hour,
|
||||
"Einnahmen_Euro_pro_Stunde": revenue_per_hour,
|
||||
"Gesamtbilanz_Euro": total_cost - total_revenue,
|
||||
"EAuto_SoC_pro_Stunde": soc_ev_per_hour,
|
||||
"Gesamteinnahmen_Euro": total_revenue,
|
||||
"Gesamtkosten_Euro": total_cost,
|
||||
"Verluste_Pro_Stunde": losses_wh_per_hour,
|
||||
"Gesamt_Verluste": total_losses,
|
||||
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
|
||||
"Electricity_price": electricity_price_per_hour,
|
||||
}
|
||||
|
||||
|
||||
# Initialize the Energy Management System, it is a singleton.
|
||||
ems = EnergyManagement()
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
Kept in an extra module to avoid cyclic dependencies on package import.
|
||||
"""
|
||||
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
@@ -10,6 +11,13 @@ from pydantic import Field
|
||||
from akkudoktoreos.config.configabc import SettingsBaseModel
|
||||
|
||||
|
||||
class EnergyManagementMode(str, Enum):
|
||||
"""Energy management mode."""
|
||||
|
||||
PREDICTION = "PREDICTION"
|
||||
OPTIMIZATION = "OPTIMIZATION"
|
||||
|
||||
|
||||
class EnergyManagementCommonSettings(SettingsBaseModel):
|
||||
"""Energy Management Configuration."""
|
||||
|
||||
@@ -24,3 +32,9 @@ class EnergyManagementCommonSettings(SettingsBaseModel):
|
||||
description="Intervall in seconds between EOS energy management runs.",
|
||||
examples=["300"],
|
||||
)
|
||||
|
||||
mode: Optional[EnergyManagementMode] = Field(
|
||||
default=None,
|
||||
description="Energy management mode [OPTIMIZATION | PREDICTION].",
|
||||
examples=["OPTIMIZATION", "PREDICTION"],
|
||||
)
|
||||
|
||||
@@ -42,6 +42,10 @@ class InterceptHandler(pylogging.Handler):
|
||||
Args:
|
||||
record (logging.LogRecord): A record object containing log message and metadata.
|
||||
"""
|
||||
# Skip DEBUG logs from matplotlib - very noisy
|
||||
if record.name.startswith("matplotlib") and record.levelno <= pylogging.DEBUG:
|
||||
return
|
||||
|
||||
try:
|
||||
level = logger.level(record.levelname).name
|
||||
except AttributeError:
|
||||
|
||||
@@ -15,11 +15,6 @@ from akkudoktoreos.core.logabc import LOGGING_LEVELS
|
||||
class LoggingCommonSettings(SettingsBaseModel):
|
||||
"""Logging Configuration."""
|
||||
|
||||
level: Optional[str] = Field(
|
||||
default=None,
|
||||
deprecated="This is deprecated. Use console_level and file_level instead.",
|
||||
)
|
||||
|
||||
console_level: Optional[str] = Field(
|
||||
default=None,
|
||||
description="Logging level when logging to console.",
|
||||
|
||||
@@ -14,7 +14,6 @@ Key Features:
|
||||
|
||||
import inspect
|
||||
import json
|
||||
import re
|
||||
import uuid
|
||||
import weakref
|
||||
from copy import deepcopy
|
||||
@@ -32,23 +31,20 @@ from typing import (
|
||||
from zoneinfo import ZoneInfo
|
||||
|
||||
import pandas as pd
|
||||
import pendulum
|
||||
from loguru import logger
|
||||
from pandas.api.types import is_datetime64_any_dtype
|
||||
from pydantic import (
|
||||
AwareDatetime,
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
Field,
|
||||
PrivateAttr,
|
||||
RootModel,
|
||||
TypeAdapter,
|
||||
ValidationError,
|
||||
ValidationInfo,
|
||||
field_validator,
|
||||
)
|
||||
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
from akkudoktoreos.utils.datetimeutil import DateTime, to_datetime, to_duration
|
||||
|
||||
# Global weakref dictionary to hold external state per model instance
|
||||
# Used as a workaround for PrivateAttr not working in e.g. Mixin Classes
|
||||
@@ -56,49 +52,40 @@ _model_private_state: "weakref.WeakKeyDictionary[Union[PydanticBaseModel, Pydant
|
||||
|
||||
|
||||
def merge_models(source: BaseModel, update_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
def deep_update(source_dict: dict[str, Any], update_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
for key, value in source_dict.items():
|
||||
if isinstance(value, dict) and isinstance(update_dict.get(key), dict):
|
||||
update_dict[key] = deep_update(update_dict[key], value)
|
||||
else:
|
||||
update_dict[key] = value
|
||||
return update_dict
|
||||
"""Merge a Pydantic model instance with an update dictionary.
|
||||
|
||||
Values in update_dict (including None) override source values.
|
||||
Nested dictionaries are merged recursively.
|
||||
Lists in update_dict replace source lists entirely.
|
||||
|
||||
Args:
|
||||
source (BaseModel): Pydantic model instance serving as the source.
|
||||
update_dict (dict[str, Any]): Dictionary with updates to apply.
|
||||
|
||||
Returns:
|
||||
dict[str, Any]: Merged dictionary representing combined model data.
|
||||
"""
|
||||
|
||||
def deep_merge(source_data: Any, update_data: Any) -> Any:
|
||||
if isinstance(source_data, dict) and isinstance(update_data, dict):
|
||||
merged = dict(source_data)
|
||||
for key, update_value in update_data.items():
|
||||
if key in merged:
|
||||
merged[key] = deep_merge(merged[key], update_value)
|
||||
else:
|
||||
merged[key] = update_value
|
||||
return merged
|
||||
|
||||
# If both are lists, replace source list with update list
|
||||
if isinstance(source_data, list) and isinstance(update_data, list):
|
||||
return update_data
|
||||
|
||||
# For other types or if update_data is None, override source_data
|
||||
return update_data
|
||||
|
||||
source_dict = source.model_dump(exclude_unset=True)
|
||||
merged_dict = deep_update(source_dict, deepcopy(update_dict))
|
||||
|
||||
return merged_dict
|
||||
|
||||
|
||||
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
|
||||
"""Custom type adapter for Pendulum DateTime fields."""
|
||||
|
||||
@classmethod
|
||||
def serialize(cls, value: Any) -> str:
|
||||
"""Convert pendulum.DateTime to ISO 8601 string."""
|
||||
if isinstance(value, pendulum.DateTime):
|
||||
return value.to_iso8601_string()
|
||||
raise ValueError(f"Expected pendulum.DateTime, got {type(value)}")
|
||||
|
||||
@classmethod
|
||||
def deserialize(cls, value: Any) -> pendulum.DateTime:
|
||||
"""Convert ISO 8601 string to pendulum.DateTime."""
|
||||
if isinstance(value, str) and cls.is_iso8601(value):
|
||||
try:
|
||||
return pendulum.parse(value)
|
||||
except pendulum.parsing.exceptions.ParserError as e:
|
||||
raise ValueError(f"Invalid date format: {value}") from e
|
||||
elif isinstance(value, pendulum.DateTime):
|
||||
return value
|
||||
raise ValueError(f"Expected ISO 8601 string or pendulum.DateTime, got {type(value)}")
|
||||
|
||||
@staticmethod
|
||||
def is_iso8601(value: str) -> bool:
|
||||
"""Check if the string is a valid ISO 8601 date string."""
|
||||
iso8601_pattern = (
|
||||
r"^(\d{4}-\d{2}-\d{2}[T ]\d{2}:\d{2}:\d{2}(?:\.\d{1,3})?(?:Z|[+-]\d{2}:\d{2})?)$"
|
||||
)
|
||||
return bool(re.match(iso8601_pattern, value))
|
||||
merged_result = deep_merge(source_dict, deepcopy(update_dict))
|
||||
return merged_result
|
||||
|
||||
|
||||
class PydanticModelNestedValueMixin:
|
||||
@@ -653,67 +640,9 @@ class PydanticBaseModel(PydanticModelNestedValueMixin, BaseModel):
|
||||
"""
|
||||
return hash(self._uuid)
|
||||
|
||||
@field_validator("*", mode="before")
|
||||
def validate_and_convert_pendulum(cls, value: Any, info: ValidationInfo) -> Any:
|
||||
"""Validator to convert fields of type `pendulum.DateTime`.
|
||||
|
||||
Converts fields to proper `pendulum.DateTime` objects, ensuring correct input types.
|
||||
|
||||
This method is invoked for every field before the field value is set. If the field's type
|
||||
is `pendulum.DateTime`, it tries to convert string or timestamp values to `pendulum.DateTime`
|
||||
objects. If the value cannot be converted, a validation error is raised.
|
||||
|
||||
Args:
|
||||
value: The value to be assigned to the field.
|
||||
info: Validation information for the field.
|
||||
|
||||
Returns:
|
||||
The converted value, if successful.
|
||||
|
||||
Raises:
|
||||
ValidationError: If the value cannot be converted to `pendulum.DateTime`.
|
||||
"""
|
||||
# Get the field name and expected type
|
||||
field_name = info.field_name
|
||||
expected_type = cls.model_fields[field_name].annotation
|
||||
|
||||
# Convert
|
||||
if expected_type is pendulum.DateTime or expected_type is AwareDatetime:
|
||||
try:
|
||||
value = to_datetime(value)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Cannot convert {value!r} to datetime: {e}")
|
||||
return value
|
||||
|
||||
# Override Pydantic’s serialization for all DateTime fields
|
||||
def model_dump(
|
||||
self, *args: Any, include_computed_fields: bool = True, **kwargs: Any
|
||||
) -> dict[str, Any]:
|
||||
"""Custom dump method to handle serialization for DateTime fields."""
|
||||
result = super().model_dump(*args, **kwargs)
|
||||
|
||||
if not include_computed_fields:
|
||||
for computed_field_name in self.model_computed_fields:
|
||||
result.pop(computed_field_name, None)
|
||||
|
||||
for key, value in result.items():
|
||||
if isinstance(value, pendulum.DateTime):
|
||||
result[key] = PydanticTypeAdapterDateTime.serialize(value)
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def model_construct(
|
||||
cls, _fields_set: set[str] | None = None, **values: Any
|
||||
) -> "PydanticBaseModel":
|
||||
"""Custom constructor to handle deserialization for DateTime fields."""
|
||||
for key, value in values.items():
|
||||
if isinstance(value, str) and PydanticTypeAdapterDateTime.is_iso8601(value):
|
||||
values[key] = PydanticTypeAdapterDateTime.deserialize(value)
|
||||
return super().model_construct(_fields_set, **values)
|
||||
|
||||
def reset_to_defaults(self) -> "PydanticBaseModel":
|
||||
"""Resets the fields to their default values."""
|
||||
for field_name, field_info in self.model_fields.items():
|
||||
for field_name, field_info in self.__class__.model_fields.items():
|
||||
if field_info.default_factory is not None: # Handle fields with default_factory
|
||||
default_value = field_info.default_factory()
|
||||
else:
|
||||
@@ -725,6 +654,19 @@ class PydanticBaseModel(PydanticModelNestedValueMixin, BaseModel):
|
||||
pass
|
||||
return self
|
||||
|
||||
# Override Pydantic’s serialization to include computed fields by default
|
||||
def model_dump(
|
||||
self, *args: Any, include_computed_fields: bool = True, **kwargs: Any
|
||||
) -> dict[str, Any]:
|
||||
"""Custom dump method to serialize computed fields by default."""
|
||||
result = super().model_dump(*args, **kwargs)
|
||||
|
||||
if not include_computed_fields:
|
||||
for computed_field_name in self.__class__.model_computed_fields:
|
||||
result.pop(computed_field_name, None)
|
||||
|
||||
return result
|
||||
|
||||
def to_dict(self) -> dict:
|
||||
"""Convert this PredictionRecord instance to a dictionary representation.
|
||||
|
||||
@@ -910,16 +852,27 @@ class PydanticDateTimeDataFrame(PydanticBaseModel):
|
||||
if not v:
|
||||
return v
|
||||
|
||||
valid_dtypes = {"int64", "float64", "bool", "datetime64[ns]", "object", "string"}
|
||||
invalid_dtypes = set(v.values()) - valid_dtypes
|
||||
if invalid_dtypes:
|
||||
raise ValueError(f"Unsupported dtypes: {invalid_dtypes}")
|
||||
# Allowed exact dtypes
|
||||
valid_base_dtypes = {"int64", "float64", "bool", "object", "string"}
|
||||
|
||||
def is_valid_dtype(dtype: str) -> bool:
|
||||
# Allow timezone-aware or naive datetime64
|
||||
if dtype.startswith("datetime64[ns"):
|
||||
return True
|
||||
return dtype in valid_base_dtypes
|
||||
|
||||
invalid_dtypes = [dtype for dtype in v.values() if not is_valid_dtype(dtype)]
|
||||
if invalid_dtypes:
|
||||
raise ValueError(f"Unsupported dtypes: {set(invalid_dtypes)}")
|
||||
|
||||
# Cross-check with data column existence
|
||||
data = info.data.get("data", {})
|
||||
if data:
|
||||
columns = set(next(iter(data.values())).keys())
|
||||
if not all(col in columns for col in v.keys()):
|
||||
raise ValueError("dtype columns must exist in data columns")
|
||||
missing_columns = set(v.keys()) - columns
|
||||
if missing_columns:
|
||||
raise ValueError(f"dtype columns must exist in data columns: {missing_columns}")
|
||||
|
||||
return v
|
||||
|
||||
def to_dataframe(self) -> pd.DataFrame:
|
||||
@@ -927,7 +880,8 @@ class PydanticDateTimeDataFrame(PydanticBaseModel):
|
||||
df = pd.DataFrame.from_dict(self.data, orient="index")
|
||||
|
||||
# Convert index to datetime
|
||||
index = pd.Index([to_datetime(dt, in_timezone=self.tz) for dt in df.index])
|
||||
# index = pd.Index([to_datetime(dt, in_timezone=self.tz) for dt in df.index])
|
||||
index = [to_datetime(dt, in_timezone=self.tz) for dt in df.index]
|
||||
df.index = index
|
||||
|
||||
# Check if 'date_time' column exists, if not, create it
|
||||
@@ -943,8 +897,8 @@ class PydanticDateTimeDataFrame(PydanticBaseModel):
|
||||
|
||||
# Apply dtypes
|
||||
for col, dtype in self.dtypes.items():
|
||||
if dtype == "datetime64[ns]":
|
||||
df[col] = pd.to_datetime(to_datetime(df[col], in_timezone=self.tz))
|
||||
if dtype.startswith("datetime64[ns"):
|
||||
df[col] = pd.to_datetime(df[col], utc=True)
|
||||
elif dtype in dtype_mapping.keys():
|
||||
df[col] = df[col].astype(dtype_mapping[dtype])
|
||||
else:
|
||||
@@ -969,6 +923,132 @@ class PydanticDateTimeDataFrame(PydanticBaseModel):
|
||||
datetime_columns=datetime_columns,
|
||||
)
|
||||
|
||||
# --- Direct Manipulation Methods ---
|
||||
|
||||
def _normalize_index(self, index: str | DateTime) -> str:
|
||||
"""Normalize index into timezone-aware datetime string.
|
||||
|
||||
Args:
|
||||
index (str | DateTime): A datetime-like value.
|
||||
|
||||
Returns:
|
||||
str: Normalized datetime string based on model timezone.
|
||||
"""
|
||||
return to_datetime(index, as_string=True, in_timezone=self.tz)
|
||||
|
||||
def add_row(self, index: str | DateTime, row: Dict[str, Any]) -> None:
|
||||
"""Add a new row to the dataset.
|
||||
|
||||
Args:
|
||||
index (str | DateTime): Timestamp of the new row.
|
||||
row (Dict[str, Any]): Dictionary of column values. Must match existing columns.
|
||||
|
||||
Raises:
|
||||
ValueError: If row does not contain the exact same columns as existing rows.
|
||||
"""
|
||||
idx = self._normalize_index(index)
|
||||
|
||||
if self.data:
|
||||
existing_cols = set(next(iter(self.data.values())).keys())
|
||||
if set(row.keys()) != existing_cols:
|
||||
raise ValueError(f"Row must have exactly these columns: {existing_cols}")
|
||||
self.data[idx] = row
|
||||
|
||||
def update_row(self, index: str | DateTime, updates: Dict[str, Any]) -> None:
|
||||
"""Update values for an existing row.
|
||||
|
||||
Args:
|
||||
index (str | DateTime): Timestamp of the row to modify.
|
||||
updates (Dict[str, Any]): Key/value pairs of columns to update.
|
||||
|
||||
Raises:
|
||||
KeyError: If row or column does not exist.
|
||||
"""
|
||||
idx = self._normalize_index(index)
|
||||
if idx not in self.data:
|
||||
raise KeyError(f"Row {idx} not found")
|
||||
for col, value in updates.items():
|
||||
if col not in self.data[idx]:
|
||||
raise KeyError(f"Column {col} does not exist")
|
||||
self.data[idx][col] = value
|
||||
|
||||
def delete_row(self, index: str | DateTime) -> None:
|
||||
"""Delete a row from the dataset.
|
||||
|
||||
Args:
|
||||
index (str | DateTime): Timestamp of the row to delete.
|
||||
"""
|
||||
idx = self._normalize_index(index)
|
||||
if idx in self.data:
|
||||
del self.data[idx]
|
||||
|
||||
def set_value(self, index: str | DateTime, column: str, value: Any) -> None:
|
||||
"""Set a single cell value.
|
||||
|
||||
Args:
|
||||
index (str | datetime): Timestamp of the row.
|
||||
column (str): Column name.
|
||||
value (Any): New value.
|
||||
"""
|
||||
self.update_row(index, {column: value})
|
||||
|
||||
def get_value(self, index: str | DateTime, column: str) -> Any:
|
||||
"""Retrieve a single cell value.
|
||||
|
||||
Args:
|
||||
index (str | DateTime): Timestamp of the row.
|
||||
column (str): Column name.
|
||||
|
||||
Returns:
|
||||
Any: Value stored at the given location.
|
||||
"""
|
||||
idx = self._normalize_index(index)
|
||||
return self.data[idx][column]
|
||||
|
||||
def add_column(self, name: str, default: Any = None, dtype: Optional[str] = None) -> None:
|
||||
"""Add a new column to all rows.
|
||||
|
||||
Args:
|
||||
name (str): Name of the column to add.
|
||||
default (Any, optional): Default value for all rows. Defaults to None.
|
||||
dtype (Optional[str], optional): Declared data type. Defaults to None.
|
||||
"""
|
||||
for row in self.data.values():
|
||||
row[name] = default
|
||||
if dtype:
|
||||
self.dtypes[name] = dtype
|
||||
|
||||
def rename_column(self, old: str, new: str) -> None:
|
||||
"""Rename a column across all rows.
|
||||
|
||||
Args:
|
||||
old (str): Existing column name.
|
||||
new (str): New column name.
|
||||
|
||||
Raises:
|
||||
KeyError: If column does not exist.
|
||||
"""
|
||||
for row in self.data.values():
|
||||
if old not in row:
|
||||
raise KeyError(f"Column {old} does not exist")
|
||||
row[new] = row.pop(old)
|
||||
if old in self.dtypes:
|
||||
self.dtypes[new] = self.dtypes.pop(old)
|
||||
if old in self.datetime_columns:
|
||||
self.datetime_columns = [new if c == old else c for c in self.datetime_columns]
|
||||
|
||||
def drop_column(self, name: str) -> None:
|
||||
"""Remove a column from all rows.
|
||||
|
||||
Args:
|
||||
name (str): Column to remove.
|
||||
"""
|
||||
for row in self.data.values():
|
||||
if name in row:
|
||||
del row[name]
|
||||
self.dtypes.pop(name, None)
|
||||
self.datetime_columns = [c for c in self.datetime_columns if c != name]
|
||||
|
||||
|
||||
class PydanticDateTimeSeries(PydanticBaseModel):
|
||||
"""Pydantic model for validating pandas Series with datetime index in JSON format.
|
||||
@@ -1068,10 +1148,6 @@ class PydanticDateTimeSeries(PydanticBaseModel):
|
||||
)
|
||||
|
||||
|
||||
class ParametersBaseModel(PydanticBaseModel):
|
||||
model_config = ConfigDict(extra="forbid")
|
||||
|
||||
|
||||
def set_private_attr(
|
||||
model: Union[PydanticBaseModel, PydanticModelNestedValueMixin], key: str, value: Any
|
||||
) -> None:
|
||||
|
||||
5
src/akkudoktoreos/core/version.py
Normal file
5
src/akkudoktoreos/core/version.py
Normal file
@@ -0,0 +1,5 @@
|
||||
"""Version information for akkudoktoreos."""
|
||||
|
||||
# For development add `+dev` to previous release
|
||||
# For release omit `+dev`.
|
||||
__version__ = "0.1.0+dev"
|
||||
Reference in New Issue
Block a user