mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-11-25 14:56:27 +00:00
fix: automatic optimization (#596)
This fix implements the long term goal to have the EOS server run optimization (or
energy management) on regular intervals automatically. Thus clients can request
the current energy management plan at any time and it is updated on regular
intervals without interaction by the client.
This fix started out to "only" make automatic optimization (or energy management)
runs working. It turned out there are several endpoints that in some way
update predictions or run the optimization. To lock against such concurrent attempts
the code had to be refactored to allow control of execution. During refactoring it
became clear that some classes and files are named without a proper reference
to their usage. Thus not only refactoring but also renaming became necessary.
The names are still not the best, but I hope they are more intuitive.
The fix includes several bug fixes that are not directly related to the automatic optimization
but are necessary to keep EOS running properly to do the automatic optimization and
to test and document the changes.
This is a breaking change as the configuration structure changed once again and
the server API was also enhanced and streamlined. The server API that is used by
Andreas and Jörg in their videos has not changed.
* fix: automatic optimization
Allow optimization to automatically run on configured intervals gathering all
optimization parameters from configuration and predictions. The automatic run
can be configured to only run prediction updates skipping the optimization.
Extend documentaion to also cover automatic optimization. Lock automatic runs
against runs initiated by the /optimize or other endpoints. Provide new
endpoints to retrieve the energy management plan and the genetic solution
of the latest automatic optimization run. Offload energy management to thread
pool executor to keep the app more responsive during the CPU heavy optimization
run.
* fix: EOS servers recognize environment variables on startup
Force initialisation of EOS configuration on server startup to assure
all sources of EOS configuration are properly set up and read. Adapt
server tests and configuration tests to also test for environment
variable configuration.
* fix: Remove 0.0.0.0 to localhost translation under Windows
EOS imposed a 0.0.0.0 to localhost translation under Windows for
convenience. This caused some trouble in user configurations. Now, as the
default IP address configuration is 127.0.0.1, the user is responsible
for to set up the correct Windows compliant IP address.
* fix: allow names for hosts additional to IP addresses
* fix: access pydantic model fields by class
Access by instance is deprecated.
* fix: down sampling key_to_array
* fix: make cache clear endpoint clear all cache files
Make /v1/admin/cache/clear clear all cache files. Before it only cleared
expired cache files by default. Add new endpoint /v1/admin/clear-expired
to only clear expired cache files.
* fix: timezonefinder returns Europe/Paris instead of Europe/Berlin
timezonefinder 8.10 got more inaccurate for timezones in europe as there is
a common timezone. Use new package tzfpy instead which is still returning
Europe/Berlin if you are in Germany. tzfpy also claims to be faster than
timezonefinder.
* fix: provider settings configuration
Provider configuration used to be a union holding the settings for several
providers. Pydantic union handling does not always find the correct type
for a provider setting. This led to exceptions in specific configurations.
Now provider settings are explicit comfiguration items for each possible
provider. This is a breaking change as the configuration structure was
changed.
* fix: ClearOutside weather prediction irradiance calculation
Pvlib needs a pandas time index. Convert time index.
* fix: test config file priority
Do not use config_eos fixture as this fixture already creates a config file.
* fix: optimization sample request documentation
Provide all data in documentation of optimization sample request.
* fix: gitlint blocking pip dependency resolution
Replace gitlint by commitizen. Gitlint is not actively maintained anymore.
Gitlint dependencies blocked pip from dependency resolution.
* fix: sync pre-commit config to actual dependency requirements
.pre-commit-config.yaml was out of sync, also requirements-dev.txt.
* fix: missing babel in requirements.txt
Add babel to requirements.txt
* feat: setup default device configuration for automatic optimization
In case the parameters for automatic optimization are not fully defined a
default configuration is setup to allow the automatic energy management
run. The default configuration may help the user to correctly define
the device configuration.
* feat: allow configuration of genetic algorithm parameters
The genetic algorithm parameters for number of individuals, number of
generations, the seed and penalty function parameters are now avaliable
as configuration options.
* feat: allow configuration of home appliance time windows
The time windows a home appliance is allowed to run are now configurable
by the configuration (for /v1 API) and also by the home appliance parameters
(for the classic /optimize API). If there is no such configuration the
time window defaults to optimization hours, which was the standard before
the change. Documentation on how to configure time windows is added.
* feat: standardize mesaurement keys for battery/ ev SoC measurements
The standardized measurement keys to report battery SoC to the device
simulations can now be retrieved from the device configuration as a
read-only config option.
* feat: feed in tariff prediction
Add feed in tarif predictions needed for automatic optimization. The feed in
tariff can be retrieved as fixed feed in tarif or can be imported. Also add
tests for the different feed in tariff providers. Extend documentation to
cover the feed in tariff providers.
* feat: add energy management plan based on S2 standard instructions
EOS can generate an energy management plan as a list of simple instructions.
May be retrieved by the /v1/energy-management/plan endpoint. The instructions
loosely follow the S2 energy management standard.
* feat: make measurement keys configurable by EOS configuration.
The fixed measurement keys are replaced by configurable measurement keys.
* feat: make pendulum DateTime, Date, Duration types usable for pydantic models
Use pydantic_extra_types.pendulum_dt to get pydantic pendulum types. Types are
added to the datetimeutil utility. Remove custom made pendulum adaptations
from EOS pydantic module. Make EOS modules use the pydantic pendulum types
managed by the datetimeutil module instead of the core pendulum types.
* feat: Add Time, TimeWindow, TimeWindowSequence and to_time to datetimeutil.
The time windows are are added to support home appliance time window
configuration. All time classes are also pydantic models. Time is the base
class for time definition derived from pendulum.Time.
* feat: Extend DataRecord by configurable field like data.
Configurable field like data was added to support the configuration of
measurement records.
* feat: Add additional information to health information
Version information is added to the health endpoints of eos and eosDash.
The start time of the last optimization and the latest run time of the energy
management is added to the EOS health information.
* feat: add pydantic merge model tests
* feat: add plan tab to EOSdash
The plan tab displays the current energy management instructions.
* feat: add predictions tab to EOSdash
The predictions tab displays the current predictions.
* feat: add cache management to EOSdash admin tab
The admin tab is extended by a section for cache management. It allows to
clear the cache.
* feat: add about tab to EOSdash
The about tab resembles the former hello tab and provides extra information.
* feat: Adapt changelog and prepare for release management
Release management using commitizen is added. The changelog file is adapted and
teh changelog and a description for release management is added in the
documentation.
* feat(doc): Improve install and devlopment documentation
Provide a more concise installation description in Readme.md and add extra
installation page and development page to documentation.
* chore: Use memory cache for interpolation instead of dict in inverter
Decorate calculate_self_consumption() with @cachemethod_until_update to cache
results in memory during an energy management/ optimization run. Replacement
of dict type caching in inverter is now possible because all optimization
runs are properly locked and the memory cache CacheUntilUpdateStore is properly
cleared at the start of any energy management/ optimization operation.
* chore: refactor genetic
Refactor the genetic algorithm modules for enhanced module structure and better
readability. Removed unnecessary and overcomplex devices singleton. Also
split devices configuration from genetic algorithm parameters to allow further
development independently from genetic algorithm parameter format. Move
charge rates configuration for electric vehicles from optimization to devices
configuration to allow to have different charge rates for different cars in
the future.
* chore: Rename memory cache to CacheEnergyManagementStore
The name better resembles the task of the cache to chache function and method
results for an energy management run. Also the decorator functions are renamed
accordingly: cachemethod_energy_management, cache_energy_management
* chore: use class properties for config/ems/prediction mixin classes
* chore: skip debug logs from mathplotlib
Mathplotlib is very noisy in debug mode.
* chore: automatically sync bokeh js to bokeh python package
bokeh was updated to 3.8.0, make JS CDN automatically follow the package version.
* chore: rename hello.py to about.py
Make hello.py the adapted EOSdash about page.
* chore: remove demo page from EOSdash
As no the plan and prediction pages are working without configuration, the demo
page is no longer necessary
* chore: split test_server.py for system test
Split test_server.py to create explicit test_system.py for system tests.
* chore: move doc utils to generate_config_md.py
The doc utils are only used in scripts/generate_config_md.py. Move it there to
attribute for strong cohesion.
* chore: improve pydantic merge model documentation
* chore: remove pendulum warning from readme
* chore: remove GitHub discussions from contributing documentation
Github discussions is to be replaced by Akkudoktor.net.
* chore(release): bump version to 0.1.0+dev for development
* build(deps): bump fastapi[standard] from 0.115.14 to 0.117.1
bump fastapi and make coverage version (for pytest-cov) explicit to avoid pip break.
* build(deps): bump uvicorn from 0.36.0 to 0.37.0
BREAKING CHANGE: EOS configuration changed. V1 API changed.
- The available_charge_rates_percent configuration is removed from optimization.
Use the new charge_rate configuration for the electric vehicle
- Optimization configuration parameter hours renamed to horizon_hours
- Device configuration now has to provide the number of devices and device
properties per device.
- Specific prediction provider configuration to be provided by explicit
configuration item (no union for all providers).
- Measurement keys to be provided as a list.
- New feed in tariff providers have to be configured.
- /v1/measurement/loadxxx endpoints are removed. Use generic mesaurement endpoints.
- /v1/admin/cache/clear now clears all cache files. Use
/v1/admin/cache/clear-expired to only clear all expired cache files.
Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
This commit is contained in:
940
src/akkudoktoreos/optimization/genetic/genetic.py
Normal file
940
src/akkudoktoreos/optimization/genetic/genetic.py
Normal file
@@ -0,0 +1,940 @@
|
||||
"""Genetic algorithm."""
|
||||
|
||||
import random
|
||||
import time
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
from deap import algorithms, base, creator, tools
|
||||
from loguru import logger
|
||||
from numpydantic import NDArray, Shape
|
||||
from pydantic import ConfigDict, Field
|
||||
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.devices.genetic.battery import Battery
|
||||
from akkudoktoreos.devices.genetic.homeappliance import HomeAppliance
|
||||
from akkudoktoreos.devices.genetic.inverter import Inverter
|
||||
from akkudoktoreos.optimization.genetic.geneticparams import (
|
||||
GeneticEnergyManagementParameters,
|
||||
GeneticOptimizationParameters,
|
||||
)
|
||||
from akkudoktoreos.optimization.genetic.geneticsolution import (
|
||||
GeneticSimulationResult,
|
||||
GeneticSolution,
|
||||
)
|
||||
from akkudoktoreos.optimization.optimizationabc import OptimizationBase
|
||||
|
||||
|
||||
class GeneticSimulation(PydanticBaseModel):
|
||||
"""Device simulation for GENETIC optimization algorithm."""
|
||||
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
|
||||
start_hour: int = Field(
|
||||
default=0, ge=0, le=23, description="Starting hour on day for optimizations."
|
||||
)
|
||||
|
||||
optimization_hours: Optional[int] = Field(
|
||||
default=24, ge=0, description="Number of hours into the future for optimizations."
|
||||
)
|
||||
|
||||
prediction_hours: Optional[int] = Field(
|
||||
default=48, ge=0, description="Number of hours into the future for predictions"
|
||||
)
|
||||
|
||||
load_energy_array: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the total load (consumption) in watts for different time intervals.",
|
||||
)
|
||||
pv_prediction_wh: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the forecasted photovoltaic output in watts for different time intervals.",
|
||||
)
|
||||
elect_price_hourly: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the electricity price in euros per watt-hour for different time intervals.",
|
||||
)
|
||||
elect_revenue_per_hour_arr: Optional[NDArray[Shape["*"], float]] = Field(
|
||||
default=None,
|
||||
description="An array of floats representing the feed-in compensation in euros per watt-hour.",
|
||||
)
|
||||
|
||||
battery: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
ev: Optional[Battery] = Field(default=None, description="TBD.")
|
||||
home_appliance: Optional[HomeAppliance] = Field(default=None, description="TBD.")
|
||||
inverter: Optional[Inverter] = Field(default=None, description="TBD.")
|
||||
|
||||
ac_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
|
||||
def prepare(
|
||||
self,
|
||||
parameters: GeneticEnergyManagementParameters,
|
||||
optimization_hours: int,
|
||||
prediction_hours: int,
|
||||
ev: Optional[Battery] = None,
|
||||
home_appliance: Optional[HomeAppliance] = None,
|
||||
inverter: Optional[Inverter] = None,
|
||||
) -> None:
|
||||
self.optimization_hours = optimization_hours
|
||||
self.prediction_hours = prediction_hours
|
||||
self.load_energy_array = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prediction_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.elect_price_hourly = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.elect_revenue_per_hour_arr = (
|
||||
parameters.einspeiseverguetung_euro_pro_wh
|
||||
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
||||
else np.full(
|
||||
len(self.load_energy_array), parameters.einspeiseverguetung_euro_pro_wh, float
|
||||
)
|
||||
)
|
||||
if inverter:
|
||||
self.battery = inverter.battery
|
||||
else:
|
||||
self.battery = None
|
||||
self.ev = ev
|
||||
self.home_appliance = home_appliance
|
||||
self.inverter = inverter
|
||||
self.ac_charge_hours = np.full(self.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.prediction_hours, 0.0)
|
||||
"""Prepare simulation runs."""
|
||||
self.load_energy_array = np.array(parameters.gesamtlast, float)
|
||||
self.pv_prediction_wh = np.array(parameters.pv_prognose_wh, float)
|
||||
self.elect_price_hourly = np.array(parameters.strompreis_euro_pro_wh, float)
|
||||
self.elect_revenue_per_hour_arr = (
|
||||
parameters.einspeiseverguetung_euro_pro_wh
|
||||
if isinstance(parameters.einspeiseverguetung_euro_pro_wh, list)
|
||||
else np.full(
|
||||
len(self.load_energy_array), parameters.einspeiseverguetung_euro_pro_wh, float
|
||||
)
|
||||
)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.battery:
|
||||
self.battery.set_discharge_per_hour(ds)
|
||||
|
||||
def set_akku_ac_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ac_charge_hours = ds
|
||||
|
||||
def set_akku_dc_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.dc_charge_hours = ds
|
||||
|
||||
def set_ev_charge_hours(self, ds: np.ndarray) -> None:
|
||||
self.ev_charge_hours = ds
|
||||
|
||||
def set_home_appliance_start(self, ds: int, global_start_hour: int = 0) -> None:
|
||||
if self.home_appliance:
|
||||
self.home_appliance.set_starting_time(ds, global_start_hour=global_start_hour)
|
||||
|
||||
def reset(self) -> None:
|
||||
if self.ev:
|
||||
self.ev.reset()
|
||||
if self.battery:
|
||||
self.battery.reset()
|
||||
|
||||
def simulate(self, start_hour: int) -> dict[str, Any]:
|
||||
"""Simulate energy usage and costs for the given start hour.
|
||||
|
||||
akku_soc_pro_stunde begin of the hour, initial hour state!
|
||||
last_wh_pro_stunde integral of last hour (end state)
|
||||
"""
|
||||
# Remember start hour
|
||||
self.start_hour = start_hour
|
||||
|
||||
# Check for simulation integrity
|
||||
required_attrs = [
|
||||
"load_energy_array",
|
||||
"pv_prediction_wh",
|
||||
"elect_price_hourly",
|
||||
"ev_charge_hours",
|
||||
"ac_charge_hours",
|
||||
"dc_charge_hours",
|
||||
"elect_revenue_per_hour_arr",
|
||||
]
|
||||
missing_data = [
|
||||
attr.replace("_", " ").title() for attr in required_attrs if getattr(self, attr) is None
|
||||
]
|
||||
|
||||
if missing_data:
|
||||
logger.error("Mandatory data missing - %s", ", ".join(missing_data))
|
||||
raise ValueError(f"Mandatory data missing: {', '.join(missing_data)}")
|
||||
|
||||
# Pre-fetch data
|
||||
load_energy_array = np.array(self.load_energy_array)
|
||||
pv_prediction_wh = np.array(self.pv_prediction_wh)
|
||||
elect_price_hourly = np.array(self.elect_price_hourly)
|
||||
ev_charge_hours = np.array(self.ev_charge_hours)
|
||||
ac_charge_hours = np.array(self.ac_charge_hours)
|
||||
dc_charge_hours = np.array(self.dc_charge_hours)
|
||||
elect_revenue_per_hour_arr = np.array(self.elect_revenue_per_hour_arr)
|
||||
|
||||
# Fetch objects
|
||||
battery = self.battery
|
||||
ev = self.ev
|
||||
home_appliance = self.home_appliance
|
||||
inverter = self.inverter
|
||||
|
||||
if not (len(load_energy_array) == len(pv_prediction_wh) == len(elect_price_hourly)):
|
||||
error_msg = f"Array sizes do not match: Load Curve = {len(load_energy_array)}, PV Forecast = {len(pv_prediction_wh)}, Electricity Price = {len(elect_price_hourly)}"
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
||||
end_hour = len(load_energy_array)
|
||||
total_hours = end_hour - start_hour
|
||||
|
||||
# Pre-allocate arrays for the results, optimized for speed
|
||||
loads_energy_per_hour = np.full((total_hours), np.nan)
|
||||
feedin_energy_per_hour = np.full((total_hours), np.nan)
|
||||
consumption_energy_per_hour = np.full((total_hours), np.nan)
|
||||
costs_per_hour = np.full((total_hours), np.nan)
|
||||
revenue_per_hour = np.full((total_hours), np.nan)
|
||||
soc_per_hour = np.full((total_hours), np.nan)
|
||||
soc_ev_per_hour = np.full((total_hours), np.nan)
|
||||
losses_wh_per_hour = np.full((total_hours), np.nan)
|
||||
home_appliance_wh_per_hour = np.full((total_hours), np.nan)
|
||||
electricity_price_per_hour = np.full((total_hours), np.nan)
|
||||
|
||||
# Set initial state
|
||||
if battery:
|
||||
soc_per_hour[0] = battery.current_soc_percentage()
|
||||
if ev:
|
||||
soc_ev_per_hour[0] = ev.current_soc_percentage()
|
||||
|
||||
for hour in range(start_hour, end_hour):
|
||||
hour_idx = hour - start_hour
|
||||
|
||||
# save begin states
|
||||
if battery:
|
||||
soc_per_hour[hour_idx] = battery.current_soc_percentage()
|
||||
if ev:
|
||||
soc_ev_per_hour[hour_idx] = ev.current_soc_percentage()
|
||||
|
||||
# Accumulate loads and PV generation
|
||||
consumption = load_energy_array[hour]
|
||||
losses_wh_per_hour[hour_idx] = 0.0
|
||||
|
||||
# Home appliances
|
||||
if home_appliance:
|
||||
ha_load = home_appliance.get_load_for_hour(hour)
|
||||
consumption += ha_load
|
||||
home_appliance_wh_per_hour[hour_idx] = ha_load
|
||||
|
||||
# E-Auto handling
|
||||
if ev and ev_charge_hours[hour] > 0:
|
||||
loaded_energy_ev, verluste_eauto = ev.charge_energy(
|
||||
None, hour, relative_power=ev_charge_hours[hour]
|
||||
)
|
||||
consumption += loaded_energy_ev
|
||||
losses_wh_per_hour[hour_idx] += verluste_eauto
|
||||
|
||||
# Process inverter logic
|
||||
energy_feedin_grid_actual = energy_consumption_grid_actual = losses = eigenverbrauch = (
|
||||
0.0
|
||||
)
|
||||
|
||||
hour_ac_charge = ac_charge_hours[hour]
|
||||
hour_dc_charge = dc_charge_hours[hour]
|
||||
hourly_electricity_price = elect_price_hourly[hour]
|
||||
hourly_energy_revenue = elect_revenue_per_hour_arr[hour]
|
||||
|
||||
if battery:
|
||||
battery.set_charge_allowed_for_hour(hour_dc_charge, hour)
|
||||
|
||||
if inverter:
|
||||
energy_produced = pv_prediction_wh[hour]
|
||||
(
|
||||
energy_feedin_grid_actual,
|
||||
energy_consumption_grid_actual,
|
||||
losses,
|
||||
eigenverbrauch,
|
||||
) = inverter.process_energy(energy_produced, consumption, hour)
|
||||
|
||||
# AC PV Battery Charge
|
||||
if battery and hour_ac_charge > 0.0:
|
||||
battery.set_charge_allowed_for_hour(1, hour)
|
||||
battery_charged_energy_actual, battery_losses_actual = battery.charge_energy(
|
||||
None, hour, relative_power=hour_ac_charge
|
||||
)
|
||||
|
||||
total_battery_energy = battery_charged_energy_actual + battery_losses_actual
|
||||
consumption += total_battery_energy
|
||||
energy_consumption_grid_actual += total_battery_energy
|
||||
losses_wh_per_hour[hour_idx] += battery_losses_actual
|
||||
|
||||
# Update hourly arrays
|
||||
feedin_energy_per_hour[hour_idx] = energy_feedin_grid_actual
|
||||
consumption_energy_per_hour[hour_idx] = energy_consumption_grid_actual
|
||||
losses_wh_per_hour[hour_idx] += losses
|
||||
loads_energy_per_hour[hour_idx] = consumption
|
||||
electricity_price_per_hour[hour_idx] = hourly_electricity_price
|
||||
|
||||
# Financial calculations
|
||||
costs_per_hour[hour_idx] = energy_consumption_grid_actual * hourly_electricity_price
|
||||
revenue_per_hour[hour_idx] = energy_feedin_grid_actual * hourly_energy_revenue
|
||||
|
||||
total_cost = np.nansum(costs_per_hour)
|
||||
total_losses = np.nansum(losses_wh_per_hour)
|
||||
total_revenue = np.nansum(revenue_per_hour)
|
||||
|
||||
# Prepare output dictionary
|
||||
return {
|
||||
"Last_Wh_pro_Stunde": loads_energy_per_hour,
|
||||
"Netzeinspeisung_Wh_pro_Stunde": feedin_energy_per_hour,
|
||||
"Netzbezug_Wh_pro_Stunde": consumption_energy_per_hour,
|
||||
"Kosten_Euro_pro_Stunde": costs_per_hour,
|
||||
"akku_soc_pro_stunde": soc_per_hour,
|
||||
"Einnahmen_Euro_pro_Stunde": revenue_per_hour,
|
||||
"Gesamtbilanz_Euro": total_cost - total_revenue,
|
||||
"EAuto_SoC_pro_Stunde": soc_ev_per_hour,
|
||||
"Gesamteinnahmen_Euro": total_revenue,
|
||||
"Gesamtkosten_Euro": total_cost,
|
||||
"Verluste_Pro_Stunde": losses_wh_per_hour,
|
||||
"Gesamt_Verluste": total_losses,
|
||||
"Home_appliance_wh_per_hour": home_appliance_wh_per_hour,
|
||||
"Electricity_price": electricity_price_per_hour,
|
||||
}
|
||||
|
||||
|
||||
class GeneticOptimization(OptimizationBase):
|
||||
"""GENETIC algorithm to solve energy optimization."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
verbose: bool = False,
|
||||
fixed_seed: Optional[int] = None,
|
||||
):
|
||||
"""Initialize the optimization problem with the required parameters."""
|
||||
self.opti_param: dict[str, Any] = {}
|
||||
self.fixed_eauto_hours = (
|
||||
self.config.prediction.hours - self.config.optimization.horizon_hours
|
||||
)
|
||||
self.ev_possible_charge_values: list[float] = [1.0]
|
||||
self.verbose = verbose
|
||||
self.fix_seed = fixed_seed
|
||||
self.optimize_ev = True
|
||||
self.optimize_dc_charge = False
|
||||
self.fitness_history: dict[str, Any] = {}
|
||||
|
||||
# Set a fixed seed for random operations if provided or in debug mode
|
||||
if self.fix_seed is not None:
|
||||
random.seed(self.fix_seed)
|
||||
elif logger.level == "DEBUG":
|
||||
self.fix_seed = random.randint(1, 100000000000) # noqa: S311
|
||||
random.seed(self.fix_seed)
|
||||
|
||||
# Create Simulation
|
||||
self.simulation = GeneticSimulation()
|
||||
|
||||
def decode_charge_discharge(
|
||||
self, discharge_hours_bin: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""Decode the input array into ac_charge, dc_charge, and discharge arrays."""
|
||||
discharge_hours_bin_np = np.array(discharge_hours_bin)
|
||||
len_ac = len(self.ev_possible_charge_values)
|
||||
|
||||
# Categorization:
|
||||
# Idle: 0 .. len_ac-1
|
||||
# Discharge: len_ac .. 2*len_ac - 1
|
||||
# AC Charge: 2*len_ac .. 3*len_ac - 1
|
||||
# DC optional: 3*len_ac (not allowed), 3*len_ac + 1 (allowed)
|
||||
|
||||
# Idle has no charge, Discharge has binary 1, AC Charge has corresponding values
|
||||
# Idle states
|
||||
idle_mask = (discharge_hours_bin_np >= 0) & (discharge_hours_bin_np < len_ac)
|
||||
|
||||
# Discharge states
|
||||
discharge_mask = (discharge_hours_bin_np >= len_ac) & (discharge_hours_bin_np < 2 * len_ac)
|
||||
|
||||
# AC states
|
||||
ac_mask = (discharge_hours_bin_np >= 2 * len_ac) & (discharge_hours_bin_np < 3 * len_ac)
|
||||
ac_indices = (discharge_hours_bin_np[ac_mask] - 2 * len_ac).astype(int)
|
||||
|
||||
# DC states (if enabled)
|
||||
if self.optimize_dc_charge:
|
||||
dc_not_allowed_state = 3 * len_ac
|
||||
dc_allowed_state = 3 * len_ac + 1
|
||||
dc_charge = np.where(discharge_hours_bin_np == dc_allowed_state, 1, 0)
|
||||
else:
|
||||
dc_charge = np.ones_like(discharge_hours_bin_np, dtype=float)
|
||||
|
||||
# Generate the result arrays
|
||||
discharge = np.zeros_like(discharge_hours_bin_np, dtype=int)
|
||||
discharge[discharge_mask] = 1 # Set Discharge states to 1
|
||||
|
||||
ac_charge = np.zeros_like(discharge_hours_bin_np, dtype=float)
|
||||
ac_charge[ac_mask] = [self.ev_possible_charge_values[i] for i in ac_indices]
|
||||
|
||||
# Idle is just 0, already default.
|
||||
|
||||
return ac_charge, dc_charge, discharge
|
||||
|
||||
def mutate(self, individual: list[int]) -> tuple[list[int]]:
|
||||
"""Custom mutation function for the individual."""
|
||||
# Calculate the number of states
|
||||
len_ac = len(self.ev_possible_charge_values)
|
||||
if self.optimize_dc_charge:
|
||||
total_states = 3 * len_ac + 2
|
||||
else:
|
||||
total_states = 3 * len_ac
|
||||
|
||||
# 1. Mutating the charge_discharge part
|
||||
charge_discharge_part = individual[: self.config.prediction.hours]
|
||||
(charge_discharge_mutated,) = self.toolbox.mutate_charge_discharge(charge_discharge_part)
|
||||
|
||||
# Instead of a fixed clamping to 0..8 or 0..6 dynamically:
|
||||
charge_discharge_mutated = np.clip(charge_discharge_mutated, 0, total_states - 1)
|
||||
individual[: self.config.prediction.hours] = charge_discharge_mutated
|
||||
|
||||
# 2. Mutating the EV charge part, if active
|
||||
if self.optimize_ev:
|
||||
ev_charge_part = individual[
|
||||
self.config.prediction.hours : self.config.prediction.hours * 2
|
||||
]
|
||||
(ev_charge_part_mutated,) = self.toolbox.mutate_ev_charge_index(ev_charge_part)
|
||||
ev_charge_part_mutated[self.config.prediction.hours - self.fixed_eauto_hours :] = [
|
||||
0
|
||||
] * self.fixed_eauto_hours
|
||||
individual[self.config.prediction.hours : self.config.prediction.hours * 2] = (
|
||||
ev_charge_part_mutated
|
||||
)
|
||||
|
||||
# 3. Mutating the appliance start time, if applicable
|
||||
if self.opti_param["home_appliance"] > 0:
|
||||
appliance_part = [individual[-1]]
|
||||
(appliance_part_mutated,) = self.toolbox.mutate_hour(appliance_part)
|
||||
individual[-1] = appliance_part_mutated[0]
|
||||
|
||||
return (individual,)
|
||||
|
||||
# Method to create an individual based on the conditions
|
||||
def create_individual(self) -> list[int]:
|
||||
# Start with discharge states for the individual
|
||||
individual_components = [
|
||||
self.toolbox.attr_discharge_state() for _ in range(self.config.prediction.hours)
|
||||
]
|
||||
|
||||
# Add EV charge index values if optimize_ev is True
|
||||
if self.optimize_ev:
|
||||
individual_components += [
|
||||
self.toolbox.attr_ev_charge_index() for _ in range(self.config.prediction.hours)
|
||||
]
|
||||
|
||||
# Add the start time of the household appliance if it's being optimized
|
||||
if self.opti_param["home_appliance"] > 0:
|
||||
individual_components += [self.toolbox.attr_int()]
|
||||
|
||||
return creator.Individual(individual_components)
|
||||
|
||||
def merge_individual(
|
||||
self,
|
||||
discharge_hours_bin: np.ndarray,
|
||||
eautocharge_hours_index: Optional[np.ndarray],
|
||||
washingstart_int: Optional[int],
|
||||
) -> list[int]:
|
||||
"""Merge the individual components back into a single solution list.
|
||||
|
||||
Parameters:
|
||||
discharge_hours_bin (np.ndarray): Binary discharge hours.
|
||||
eautocharge_hours_index (Optional[np.ndarray]): EV charge hours as integers, or None.
|
||||
washingstart_int (Optional[int]): Dishwasher start time as integer, or None.
|
||||
|
||||
Returns:
|
||||
list[int]: The merged individual solution as a list of integers.
|
||||
"""
|
||||
# Start with the discharge hours
|
||||
individual = discharge_hours_bin.tolist()
|
||||
|
||||
# Add EV charge hours if applicable
|
||||
if self.optimize_ev and eautocharge_hours_index is not None:
|
||||
individual.extend(eautocharge_hours_index.tolist())
|
||||
elif self.optimize_ev:
|
||||
# Falls optimize_ev aktiv ist, aber keine EV-Daten vorhanden sind, fügen wir Nullen hinzu
|
||||
individual.extend([0] * self.config.prediction.hours)
|
||||
|
||||
# Add dishwasher start time if applicable
|
||||
if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int is not None:
|
||||
individual.append(washingstart_int)
|
||||
elif self.opti_param.get("home_appliance", 0) > 0:
|
||||
# Falls ein Haushaltsgerät optimiert wird, aber kein Startzeitpunkt vorhanden ist
|
||||
individual.append(0)
|
||||
|
||||
return individual
|
||||
|
||||
def split_individual(
|
||||
self, individual: list[int]
|
||||
) -> tuple[np.ndarray, Optional[np.ndarray], Optional[int]]:
|
||||
"""Split the individual solution into its components.
|
||||
|
||||
Components:
|
||||
1. Discharge hours (binary as int NumPy array),
|
||||
2. Electric vehicle charge hours (float as int NumPy array, if applicable),
|
||||
3. Dishwasher start time (integer if applicable).
|
||||
"""
|
||||
# Discharge hours as a NumPy array of ints
|
||||
discharge_hours_bin = np.array(individual[: self.config.prediction.hours], dtype=int)
|
||||
|
||||
# EV charge hours as a NumPy array of ints (if optimize_ev is True)
|
||||
eautocharge_hours_index = (
|
||||
# append ev charging states to individual
|
||||
np.array(
|
||||
individual[self.config.prediction.hours : self.config.prediction.hours * 2],
|
||||
dtype=int,
|
||||
)
|
||||
if self.optimize_ev
|
||||
else None
|
||||
)
|
||||
|
||||
# Washing machine start time as an integer (if applicable)
|
||||
washingstart_int = (
|
||||
int(individual[-1])
|
||||
if self.opti_param and self.opti_param.get("home_appliance", 0) > 0
|
||||
else None
|
||||
)
|
||||
|
||||
return discharge_hours_bin, eautocharge_hours_index, washingstart_int
|
||||
|
||||
def setup_deap_environment(self, opti_param: dict[str, Any], start_hour: int) -> None:
|
||||
"""Set up the DEAP environment with fitness and individual creation rules."""
|
||||
self.opti_param = opti_param
|
||||
|
||||
# Remove existing definitions if any
|
||||
for attr in ["FitnessMin", "Individual"]:
|
||||
if attr in creator.__dict__:
|
||||
del creator.__dict__[attr]
|
||||
|
||||
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
|
||||
creator.create("Individual", list, fitness=creator.FitnessMin)
|
||||
|
||||
self.toolbox = base.Toolbox()
|
||||
len_ac = len(self.ev_possible_charge_values)
|
||||
|
||||
# Total number of states without DC:
|
||||
# Idle: len_ac states
|
||||
# Discharge: len_ac states
|
||||
# AC-Charge: len_ac states
|
||||
# Total without DC: 3 * len_ac
|
||||
|
||||
# With DC: + 2 states
|
||||
if self.optimize_dc_charge:
|
||||
total_states = 3 * len_ac + 2
|
||||
else:
|
||||
total_states = 3 * len_ac
|
||||
|
||||
# State space: 0 .. (total_states - 1)
|
||||
self.toolbox.register("attr_discharge_state", random.randint, 0, total_states - 1)
|
||||
|
||||
# EV attributes
|
||||
if self.optimize_ev:
|
||||
self.toolbox.register(
|
||||
"attr_ev_charge_index",
|
||||
random.randint,
|
||||
0,
|
||||
len_ac - 1,
|
||||
)
|
||||
|
||||
# Household appliance start time
|
||||
self.toolbox.register("attr_int", random.randint, start_hour, 23)
|
||||
|
||||
self.toolbox.register("individual", self.create_individual)
|
||||
self.toolbox.register("population", tools.initRepeat, list, self.toolbox.individual)
|
||||
self.toolbox.register("mate", tools.cxTwoPoint)
|
||||
|
||||
# Mutation operator for charge/discharge states
|
||||
self.toolbox.register(
|
||||
"mutate_charge_discharge", tools.mutUniformInt, low=0, up=total_states - 1, indpb=0.2
|
||||
)
|
||||
|
||||
# Mutation operator for EV states
|
||||
self.toolbox.register(
|
||||
"mutate_ev_charge_index",
|
||||
tools.mutUniformInt,
|
||||
low=0,
|
||||
up=len_ac - 1,
|
||||
indpb=0.2,
|
||||
)
|
||||
|
||||
# Mutation for household appliance
|
||||
self.toolbox.register("mutate_hour", tools.mutUniformInt, low=start_hour, up=23, indpb=0.2)
|
||||
|
||||
# Custom mutate function remains unchanged
|
||||
self.toolbox.register("mutate", self.mutate)
|
||||
self.toolbox.register("select", tools.selTournament, tournsize=3)
|
||||
|
||||
def evaluate_inner(self, individual: list[int]) -> dict[str, Any]:
|
||||
"""Simulates the energy management system (EMS) using the provided individual solution.
|
||||
|
||||
This is an internal function.
|
||||
"""
|
||||
self.simulation.reset()
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
|
||||
individual
|
||||
)
|
||||
if self.opti_param.get("home_appliance", 0) > 0 and washingstart_int:
|
||||
self.simulation.set_home_appliance_start(
|
||||
washingstart_int, global_start_hour=self.ems.start_datetime.hour
|
||||
)
|
||||
|
||||
ac, dc, discharge = self.decode_charge_discharge(discharge_hours_bin)
|
||||
|
||||
self.simulation.set_akku_discharge_hours(discharge)
|
||||
# Set DC charge hours only if DC optimization is enabled
|
||||
if self.optimize_dc_charge:
|
||||
self.simulation.set_akku_dc_charge_hours(dc)
|
||||
self.simulation.set_akku_ac_charge_hours(ac)
|
||||
|
||||
if eautocharge_hours_index is not None:
|
||||
eautocharge_hours_float = np.array(
|
||||
[self.ev_possible_charge_values[i] for i in eautocharge_hours_index],
|
||||
float,
|
||||
)
|
||||
self.simulation.set_ev_charge_hours(eautocharge_hours_float)
|
||||
else:
|
||||
self.simulation.set_ev_charge_hours(np.full(self.config.prediction.hours, 0))
|
||||
|
||||
# Do the simulation and return result.
|
||||
return self.simulation.simulate(self.ems.start_datetime.hour)
|
||||
|
||||
def evaluate(
|
||||
self,
|
||||
individual: list[int],
|
||||
parameters: GeneticOptimizationParameters,
|
||||
start_hour: int,
|
||||
worst_case: bool,
|
||||
) -> tuple[float]:
|
||||
"""Evaluate the fitness of an individual solution based on the simulation results."""
|
||||
try:
|
||||
o = self.evaluate_inner(individual)
|
||||
except Exception as e:
|
||||
return (100000.0,) # Return a high penalty in case of an exception
|
||||
|
||||
gesamtbilanz = o["Gesamtbilanz_Euro"] * (-1.0 if worst_case else 1.0)
|
||||
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
|
||||
individual
|
||||
)
|
||||
|
||||
# EV 100% & charge not allowed
|
||||
if self.optimize_ev:
|
||||
eauto_soc_per_hour = np.array(o.get("EAuto_SoC_pro_Stunde", [])) # Beispielkey
|
||||
|
||||
if eauto_soc_per_hour is None or eautocharge_hours_index is None:
|
||||
raise ValueError("eauto_soc_per_hour or eautocharge_hours_index is None")
|
||||
min_length = min(eauto_soc_per_hour.size, eautocharge_hours_index.size)
|
||||
eauto_soc_per_hour_tail = eauto_soc_per_hour[-min_length:]
|
||||
eautocharge_hours_index_tail = eautocharge_hours_index[-min_length:]
|
||||
|
||||
# Mask
|
||||
invalid_charge_mask = (eauto_soc_per_hour_tail == 100) & (
|
||||
eautocharge_hours_index_tail > 0
|
||||
)
|
||||
|
||||
if np.any(invalid_charge_mask):
|
||||
invalid_indices = np.where(invalid_charge_mask)[0]
|
||||
if len(invalid_indices) > 1:
|
||||
eautocharge_hours_index_tail[invalid_indices[1:]] = 0
|
||||
|
||||
eautocharge_hours_index[-min_length:] = eautocharge_hours_index_tail.tolist()
|
||||
|
||||
adjusted_individual = self.merge_individual(
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int
|
||||
)
|
||||
|
||||
individual[:] = adjusted_individual
|
||||
|
||||
# New check: Activate discharge when battery SoC is 0
|
||||
# battery_soc_per_hour = np.array(
|
||||
# o.get("akku_soc_pro_stunde", [])
|
||||
# ) # Example key for battery SoC
|
||||
|
||||
# if battery_soc_per_hour is not None:
|
||||
# if battery_soc_per_hour is None or discharge_hours_bin is None:
|
||||
# raise ValueError("battery_soc_per_hour or discharge_hours_bin is None")
|
||||
# min_length = min(battery_soc_per_hour.size, discharge_hours_bin.size)
|
||||
# battery_soc_per_hour_tail = battery_soc_per_hour[-min_length:]
|
||||
# discharge_hours_bin_tail = discharge_hours_bin[-min_length:]
|
||||
# len_ac = len(self.config.optimization.ev_available_charge_rates_percent)
|
||||
|
||||
# # # Find hours where battery SoC is 0
|
||||
# # zero_soc_mask = battery_soc_per_hour_tail == 0
|
||||
# # discharge_hours_bin_tail[zero_soc_mask] = (
|
||||
# # len_ac + 2
|
||||
# # ) # Activate discharge for these hours
|
||||
|
||||
# # When Battery SoC then set the Discharge randomly to 0 or 1. otherwise it's very
|
||||
# # unlikely to get a state where a battery can store energy for a longer time
|
||||
# # Find hours where battery SoC is 0
|
||||
# zero_soc_mask = battery_soc_per_hour_tail == 0
|
||||
# # discharge_hours_bin_tail[zero_soc_mask] = (
|
||||
# # len_ac + 2
|
||||
# # ) # Activate discharge for these hours
|
||||
# set_to_len_ac_plus_2 = np.random.rand() < 0.5 # True mit 50% Wahrscheinlichkeit
|
||||
|
||||
# # Werte setzen basierend auf der zufälligen Entscheidung
|
||||
# value_to_set = len_ac + 2 if set_to_len_ac_plus_2 else 0
|
||||
# discharge_hours_bin_tail[zero_soc_mask] = value_to_set
|
||||
|
||||
# # Merge the updated discharge_hours_bin back into the individual
|
||||
# adjusted_individual = self.merge_individual(
|
||||
# discharge_hours_bin, eautocharge_hours_index, washingstart_int
|
||||
# )
|
||||
# individual[:] = adjusted_individual
|
||||
|
||||
# More metrics
|
||||
individual.extra_data = ( # type: ignore[attr-defined]
|
||||
o["Gesamtbilanz_Euro"],
|
||||
o["Gesamt_Verluste"],
|
||||
parameters.eauto.min_soc_percentage - self.simulation.ev.current_soc_percentage()
|
||||
if parameters.eauto and self.simulation.ev
|
||||
else 0,
|
||||
)
|
||||
|
||||
# Adjust total balance with battery value and penalties for unmet SOC
|
||||
if self.simulation.battery:
|
||||
restwert_akku = (
|
||||
self.simulation.battery.current_energy_content()
|
||||
* parameters.ems.preis_euro_pro_wh_akku
|
||||
)
|
||||
gesamtbilanz += -restwert_akku
|
||||
|
||||
if self.optimize_ev:
|
||||
try:
|
||||
penalty = self.config.optimization.genetic.penalties["ev_soc_miss"]
|
||||
except:
|
||||
# Use default
|
||||
penalty = 10
|
||||
logger.error(
|
||||
"Penalty function parameter `ev_soc_miss` not configured, using {}.", penalty
|
||||
)
|
||||
gesamtbilanz += max(
|
||||
0,
|
||||
(
|
||||
parameters.eauto.min_soc_percentage
|
||||
- self.simulation.ev.current_soc_percentage()
|
||||
if parameters.eauto and self.simulation.ev
|
||||
else 0
|
||||
)
|
||||
* penalty,
|
||||
)
|
||||
|
||||
return (gesamtbilanz,)
|
||||
|
||||
def optimize(
|
||||
self,
|
||||
start_solution: Optional[list[float]] = None,
|
||||
ngen: int = 200,
|
||||
) -> tuple[Any, dict[str, list[Any]]]:
|
||||
"""Run the optimization process using a genetic algorithm.
|
||||
|
||||
@TODO: optimize() ngen default (200) is different from optimierung_ems() ngen default (400).
|
||||
"""
|
||||
# Set the number of inviduals in a generation
|
||||
try:
|
||||
individuals = self.config.optimization.genetic.individuals
|
||||
if individuals is None:
|
||||
raise
|
||||
except:
|
||||
individuals = 300
|
||||
logger.error("Individuals not configured. Using {}.", individuals)
|
||||
|
||||
population = self.toolbox.population(n=individuals)
|
||||
hof = tools.HallOfFame(1)
|
||||
stats = tools.Statistics(lambda ind: ind.fitness.values)
|
||||
stats.register("min", np.min)
|
||||
stats.register("avg", np.mean)
|
||||
stats.register("max", np.max)
|
||||
|
||||
logger.debug("Start optimize: {}", start_solution)
|
||||
|
||||
# Insert the start solution into the population if provided
|
||||
if start_solution is not None:
|
||||
for _ in range(10):
|
||||
population.insert(0, creator.Individual(start_solution))
|
||||
|
||||
# Run the evolutionary algorithm
|
||||
pop, log = algorithms.eaMuPlusLambda(
|
||||
population,
|
||||
self.toolbox,
|
||||
mu=100,
|
||||
lambda_=150,
|
||||
cxpb=0.6,
|
||||
mutpb=0.4,
|
||||
ngen=ngen,
|
||||
stats=stats,
|
||||
halloffame=hof,
|
||||
verbose=self.verbose,
|
||||
)
|
||||
|
||||
# Store fitness history
|
||||
self.fitness_history = {
|
||||
"gen": log.select("gen"), # Generation numbers (X-axis)
|
||||
"avg": log.select("avg"), # Average fitness for each generation (Y-axis)
|
||||
"max": log.select("max"), # Maximum fitness for each generation (Y-axis)
|
||||
"min": log.select("min"), # Minimum fitness for each generation (Y-axis)
|
||||
}
|
||||
|
||||
member: dict[str, list[float]] = {"bilanz": [], "verluste": [], "nebenbedingung": []}
|
||||
for ind in population:
|
||||
if hasattr(ind, "extra_data"):
|
||||
extra_value1, extra_value2, extra_value3 = ind.extra_data
|
||||
member["bilanz"].append(extra_value1)
|
||||
member["verluste"].append(extra_value2)
|
||||
member["nebenbedingung"].append(extra_value3)
|
||||
|
||||
return hof[0], member
|
||||
|
||||
def optimierung_ems(
|
||||
self,
|
||||
parameters: GeneticOptimizationParameters,
|
||||
start_hour: Optional[int] = None,
|
||||
worst_case: bool = False,
|
||||
ngen: Optional[int] = None,
|
||||
) -> GeneticSolution:
|
||||
"""Perform EMS (Energy Management System) optimization and visualize results."""
|
||||
if start_hour is None:
|
||||
start_hour = self.ems.start_datetime.hour
|
||||
# Start hour has to be in sync with energy management
|
||||
if start_hour != self.ems.start_datetime.hour:
|
||||
raise ValueError(
|
||||
f"Start hour not synced. EMS {self.ems.start_datetime.hour} vs. GENETIC {start_hour}."
|
||||
)
|
||||
|
||||
# Set the number of generations
|
||||
generations = ngen
|
||||
if generations is None:
|
||||
try:
|
||||
generations = self.config.optimization.genetic.generations
|
||||
except:
|
||||
generations = 400
|
||||
logger.error("Generations not configured. Using {}.", generations)
|
||||
|
||||
einspeiseverguetung_euro_pro_wh = np.full(
|
||||
self.config.prediction.hours, parameters.ems.einspeiseverguetung_euro_pro_wh
|
||||
)
|
||||
|
||||
self.simulation.reset()
|
||||
|
||||
# Initialize PV and EV batteries
|
||||
akku: Optional[Battery] = None
|
||||
if parameters.pv_akku:
|
||||
akku = Battery(
|
||||
parameters.pv_akku,
|
||||
prediction_hours=self.config.prediction.hours,
|
||||
)
|
||||
akku.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
|
||||
|
||||
eauto: Optional[Battery] = None
|
||||
if parameters.eauto:
|
||||
eauto = Battery(
|
||||
parameters.eauto,
|
||||
prediction_hours=self.config.prediction.hours,
|
||||
)
|
||||
eauto.set_charge_per_hour(np.full(self.config.prediction.hours, 1))
|
||||
self.optimize_ev = (
|
||||
parameters.eauto.min_soc_percentage - parameters.eauto.initial_soc_percentage >= 0
|
||||
)
|
||||
try:
|
||||
charge_rates = self.config.devices.electric_vehicles[0].charge_rates
|
||||
if charge_rates is None:
|
||||
raise
|
||||
except:
|
||||
error_msg = "No charge rates provided for electric vehicle."
|
||||
logger.exception(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
self.ev_possible_charge_values = charge_rates
|
||||
else:
|
||||
self.optimize_ev = False
|
||||
|
||||
# Initialize household appliance if applicable
|
||||
dishwasher = (
|
||||
HomeAppliance(
|
||||
parameters=parameters.dishwasher,
|
||||
optimization_hours=self.config.optimization.horizon_hours,
|
||||
prediction_hours=self.config.prediction.hours,
|
||||
)
|
||||
if parameters.dishwasher is not None
|
||||
else None
|
||||
)
|
||||
|
||||
# Initialize the inverter and energy management system
|
||||
inverter: Optional[Inverter] = None
|
||||
if parameters.inverter:
|
||||
inverter = Inverter(
|
||||
parameters.inverter,
|
||||
battery=akku,
|
||||
)
|
||||
|
||||
# Prepare device simulation
|
||||
self.simulation.prepare(
|
||||
parameters=parameters.ems,
|
||||
optimization_hours=self.config.optimization.horizon_hours,
|
||||
prediction_hours=self.config.prediction.hours,
|
||||
inverter=inverter, # battery is part of inverter
|
||||
ev=eauto,
|
||||
home_appliance=dishwasher,
|
||||
)
|
||||
|
||||
# Setup the DEAP environment and optimization process
|
||||
self.setup_deap_environment({"home_appliance": 1 if dishwasher else 0}, start_hour)
|
||||
self.toolbox.register(
|
||||
"evaluate",
|
||||
lambda ind: self.evaluate(ind, parameters, start_hour, worst_case),
|
||||
)
|
||||
|
||||
start_time = time.time()
|
||||
start_solution, extra_data = self.optimize(parameters.start_solution, ngen=generations)
|
||||
elapsed_time = time.time() - start_time
|
||||
logger.debug(f"Time evaluate inner: {elapsed_time:.4f} sec.")
|
||||
|
||||
# Perform final evaluation on the best solution
|
||||
simulation_result = self.evaluate_inner(start_solution)
|
||||
|
||||
# Prepare results
|
||||
discharge_hours_bin, eautocharge_hours_index, washingstart_int = self.split_individual(
|
||||
start_solution
|
||||
)
|
||||
# home appliance may have choosen a different appliance start hour
|
||||
if self.simulation.home_appliance:
|
||||
washingstart_int = self.simulation.home_appliance.get_appliance_start()
|
||||
|
||||
eautocharge_hours_float = (
|
||||
[self.ev_possible_charge_values[i] for i in eautocharge_hours_index]
|
||||
if eautocharge_hours_index is not None
|
||||
else None
|
||||
)
|
||||
|
||||
ac_charge, dc_charge, discharge = self.decode_charge_discharge(discharge_hours_bin)
|
||||
# Visualize the results
|
||||
visualize = {
|
||||
"ac_charge": ac_charge.tolist(),
|
||||
"dc_charge": dc_charge.tolist(),
|
||||
"discharge_allowed": discharge.tolist(),
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": simulation_result,
|
||||
"eauto_obj": self.simulation.ev.to_dict() if self.simulation.ev else None,
|
||||
"start_solution": start_solution,
|
||||
"spuelstart": washingstart_int,
|
||||
"extra_data": extra_data,
|
||||
"fitness_history": self.fitness_history,
|
||||
"fixed_seed": self.fix_seed,
|
||||
}
|
||||
from akkudoktoreos.utils.visualize import prepare_visualize
|
||||
|
||||
prepare_visualize(parameters, visualize, start_hour=start_hour)
|
||||
|
||||
return GeneticSolution(
|
||||
**{
|
||||
"ac_charge": ac_charge,
|
||||
"dc_charge": dc_charge,
|
||||
"discharge_allowed": discharge,
|
||||
"eautocharge_hours_float": eautocharge_hours_float,
|
||||
"result": GeneticSimulationResult(**simulation_result),
|
||||
"eauto_obj": self.simulation.ev,
|
||||
"start_solution": start_solution,
|
||||
"washingstart": washingstart_int,
|
||||
}
|
||||
)
|
||||
Reference in New Issue
Block a user