Add test to PVForecast (#174)

* Add documentation to class_pv_forecast.py.

Added documentation. Beware mostly generated by ChatGPT.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

* Add CacheFileStore, datetime and logger utilities.

The `CacheFileStore` class is a singleton-based, thread-safe key-value store for managing
temporary file objects, allowing the creation, retrieval, and management of cache files.

The utility modules offer a flexible logging setup (`get_logger`) and utilities to handle
different date-time formats (`to_datetime`, `to_timestamp`) and timezone detection
(`to_timezone).

- Cache files are automatically valid for the the current date unless specified otherwise.
  This is to mimic the current behaviour used in several classes.
- The logger supports rotating log files to prevent excessive log file size.
- The `to_datetime` and `to_timestamp`functions support a wide variety of input types and formats.
  They provide the time conversion that is e.g. used in PVForecast.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

* Improve testability of PVForecast

Improvements for testing of PVForecast
- Use common utility functions to allow for general testing at one spot.
  - to_datetime
  - CacheFileStore
- Use logging instead of print to easily capture in testing.
- Add validation of the json schema for Akkudoktor PV forecast data.
- Allow to create an empty PVForecast instance as base instance for testing.
- Make process_data() complete for filling a PVForecast instance for testing.
- Normalize forecast datetime to timezone of system given in loaded data.
- Do not print report but provide report for test checks.
- Get rid of cache file path using the CachFileStore to automate cache file usage.
- Improved module documentation.

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

* Add test for PVForecast and newly extracted utility modules.

- Add test for PVForecast
- Add test for CacheFileStore in the new cachefilestore module
- Add test for to_datetime, to_timestamp, to_timezone in the new
  datetimeutil module
- Add test for get_logger in the new logutil module

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>

---------

Signed-off-by: Bobby Noelte <b0661n0e17e@gmail.com>
Co-authored-by: Normann <github@koldrack.com>
This commit is contained in:
Bobby Noelte
2024-11-10 23:49:10 +01:00
committed by GitHub
parent c4c9e59a57
commit b630625a4d
12 changed files with 2740 additions and 105 deletions

View File

@@ -1,25 +1,144 @@
import hashlib
"""PV Power Forecasting Module.
This module contains classes and methods to retrieve, process, and display photovoltaic (PV)
power forecast data, including temperature, windspeed, DC power, and AC power forecasts.
The module supports caching of forecast data to reduce redundant network requests and includes
functions to update AC power measurements and retrieve forecasts within a specified date range.
Classes
ForecastData: Represents a single forecast entry, including DC power, AC power,
temperature, and windspeed.
PVForecast: Retrieves, processes, and stores PV power forecast data, either from
a file or URL, with optional caching. It also provides methods to query
and update the forecast data, convert it to a DataFrame, and output key
metrics like AC power.
Example:
# Initialize PVForecast class with an URL
forecast = PVForecast(
prediction_hours=24,
url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405..."
)
# Update the AC power measurement for a specific date and time
forecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=1000)
# Print the forecast data with DC and AC power details
forecast.print_ac_power_and_measurement()
# Get the forecast data as a Pandas DataFrame
df = forecast.get_forecast_dataframe()
print(df)
Attributes:
prediction_hours (int): Number of forecast hours. Defaults to 48.
"""
import json
import os
from datetime import datetime
from pprint import pprint
from datetime import date, datetime
from typing import List, Optional, Union
import numpy as np
import pandas as pd
import requests
from dateutil import parser
from pydantic import BaseModel, ValidationError
from akkudoktoreos.cachefilestore import cache_in_file
from akkudoktoreos.datetimeutil import to_datetime
from akkudoktoreos.logutil import get_logger
logger = get_logger(__name__, logging_level="DEBUG")
class AkkudoktorForecastHorizon(BaseModel):
altitude: int
azimuthFrom: int
azimuthTo: int
class AkkudoktorForecastMeta(BaseModel):
lat: float
lon: float
power: List[int]
azimuth: List[int]
tilt: List[int]
timezone: str
albedo: float
past_days: int
inverterEfficiency: float
powerInverter: List[int]
cellCoEff: float
range: bool
horizont: List[List[AkkudoktorForecastHorizon]]
horizontString: List[str]
class AkkudoktorForecastValue(BaseModel):
datetime: str
dcPower: float
power: float
sunTilt: float
sunAzimuth: float
temperature: float
relativehumidity_2m: float
windspeed_10m: float
class AkkudoktorForecast(BaseModel):
meta: AkkudoktorForecastMeta
values: List[List[AkkudoktorForecastValue]]
def validate_pv_forecast_data(data) -> str:
"""Validate PV forecast data."""
data_type = None
error_msg = ""
try:
AkkudoktorForecast.model_validate(data)
data_type = "Akkudoktor"
except ValidationError as e:
for error in e.errors():
field = " -> ".join(str(x) for x in error["loc"])
message = error["msg"]
error_type = error["type"]
error_msg += f"Field: {field}\nError: {message}\nType: {error_type}\n"
logger.debug(f"Validation did not succeed: {error_msg}")
return data_type
class ForecastData:
"""Stores forecast data for PV power and weather parameters.
Attributes:
date_time (datetime): The date and time of the forecast.
dc_power (float): The direct current (DC) power in watts.
ac_power (float): The alternating current (AC) power in watts.
windspeed_10m (float, optional): Wind speed at 10 meters altitude.
temperature (float, optional): Temperature in degrees Celsius.
ac_power_measurement (float, optional): Measured AC power.
"""
def __init__(
self,
date_time,
dc_power,
ac_power,
windspeed_10m=None,
temperature=None,
ac_power_measurement=None,
date_time: datetime,
dc_power: float,
ac_power: float,
windspeed_10m: Optional[float] = None,
temperature: Optional[float] = None,
ac_power_measurement: Optional[float] = None,
):
"""Initializes the ForecastData instance.
Args:
date_time (datetime): The date and time of the forecast.
dc_power (float): The DC power in watts.
ac_power (float): The AC power in watts.
windspeed_10m (float, optional): Wind speed at 10 meters altitude. Defaults to None.
temperature (float, optional): Temperature in degrees Celsius. Defaults to None.
ac_power_measurement (float, optional): Measured AC power. Defaults to None.
"""
self.date_time = date_time
self.dc_power = dc_power
self.ac_power = ac_power
@@ -27,139 +146,387 @@ class ForecastData:
self.temperature = temperature
self.ac_power_measurement = ac_power_measurement
def get_date_time(self):
def get_date_time(self) -> datetime:
"""Returns the forecast date and time.
Returns:
datetime: The date and time of the forecast.
"""
return self.date_time
def get_dc_power(self):
def get_dc_power(self) -> float:
"""Returns the DC power.
Returns:
float: DC power in watts.
"""
return self.dc_power
def ac_power_measurement(self):
def ac_power_measurement(self) -> float:
"""Returns the measured AC power.
It returns the measured AC power if available; otherwise None.
Returns:
float: Measured AC power in watts or None
"""
return self.ac_power_measurement
def get_ac_power(self):
def get_ac_power(self) -> float:
"""Returns the AC power.
If a measured value is available, it returns the measured AC power;
otherwise, it returns the forecasted AC power.
Returns:
float: AC power in watts.
"""
if self.ac_power_measurement is not None:
return self.ac_power_measurement
else:
return self.ac_power
def get_windspeed_10m(self):
def get_windspeed_10m(self) -> float:
"""Returns the wind speed at 10 meters altitude.
Returns:
float: Wind speed in meters per second.
"""
return self.windspeed_10m
def get_temperature(self):
def get_temperature(self) -> float:
"""Returns the temperature.
Returns:
float: Temperature in degrees Celsius.
"""
return self.temperature
class PVForecast:
def __init__(self, filepath=None, url=None, cache_dir="cache", prediction_hours=48):
"""Manages PV (photovoltaic) power forecasts and weather data.
Forecast data can be loaded from different sources (in-memory data, file, or URL).
Attributes:
meta (dict): Metadata related to the forecast (e.g., source, location).
forecast_data (list): A list of forecast data points of `ForecastData` objects.
prediction_hours (int): The number of hours into the future the forecast covers.
current_measurement (Optional[float]): The current AC power measurement in watts (or None if unavailable).
data (Optional[dict]): JSON data containing the forecast information (if provided).
filepath (Optional[str]): Filepath to the forecast data file (if provided).
url (Optional[str]): URL to retrieve forecast data from an API (if provided).
_forecast_start (Optional[date]): Start datetime for the forecast period.
tz_name (Optional[str]): The time zone name of the forecast data, if applicable.
"""
def __init__(
self,
data: Optional[dict] = None,
filepath: Optional[str] = None,
url: Optional[str] = None,
forecast_start: Union[datetime, date, str, int, float] = None,
prediction_hours: Optional[int] = None,
):
"""Initializes a `PVForecast` instance.
Forecast data can be loaded from in-memory `data`, a file specified by `filepath`, or
fetched from a remote `url`. If none are provided, an empty forecast will be initialized.
The `forecast_start` and `prediction_hours` parameters can be specified to control the
forecasting time period.
Use `process_data()` to fill an empty forecast later on.
Args:
data (Optional[dict]): In-memory JSON data containing forecast information. Defaults to None.
filepath (Optional[str]): Path to a local file containing forecast data in JSON format. Defaults to None.
url (Optional[str]): URL to an API providing forecast data. Defaults to None.
forecast_start (Union[datetime, date, str, int, float]): The start datetime for the forecast period.
Can be a `datetime`, `date`, `str` (formatted date), `int` (timestamp), `float`, or None. Defaults to None.
prediction_hours (Optional[int]): The number of hours to forecast into the future. Defaults to 48 hours.
Example:
forecast = PVForecast(data=my_forecast_data, forecast_start="2024-10-13", prediction_hours=72)
"""
self.meta = {}
self.forecast_data = []
self.cache_dir = cache_dir
self.prediction_hours = prediction_hours
self.current_measurement = None
self.data = data
self.filepath = filepath
self.url = url
if forecast_start:
self._forecast_start = to_datetime(forecast_start, to_naiv=True, to_maxtime=False)
else:
self._forecast_start = None
self.prediction_hours = prediction_hours
self._tz_name = None
if not os.path.exists(self.cache_dir):
os.makedirs(self.cache_dir)
if filepath:
self.load_data_from_file(filepath)
elif url:
self.load_data_with_caching(url)
if len(self.forecast_data) < self.prediction_hours:
raise ValueError(
f"Die Vorhersage muss mindestens {self.prediction_hours} Stunden umfassen, aber es wurden nur {len(self.forecast_data)} Stunden vorhergesagt."
if self.data or self.filepath or self.url:
self.process_data(
data=self.data,
filepath=self.filepath,
url=self.url,
forecast_start=self._forecast_start,
prediction_hours=self.prediction_hours,
)
def update_ac_power_measurement(self, date_time=None, ac_power_measurement=None) -> bool:
def update_ac_power_measurement(
self,
date_time: Union[datetime, date, str, int, float, None] = None,
ac_power_measurement=None,
) -> bool:
"""Updates the AC power measurement for a specific time.
Args:
date_time (datetime): The date and time of the measurement.
ac_power_measurement (float): Measured AC power.
Returns:
bool: True if a matching timestamp was found, False otherwise.
"""
found = False
input_date_hour = date_time.replace(minute=0, second=0, microsecond=0)
input_date_hour = to_datetime(
date_time, to_timezone=self._tz_name, to_naiv=True, to_maxtime=False
).replace(minute=0, second=0, microsecond=0)
for forecast in self.forecast_data:
forecast_date_hour = parser.parse(forecast.date_time).replace(
forecast_date_hour = to_datetime(forecast.date_time, to_naiv=True).replace(
minute=0, second=0, microsecond=0
)
if forecast_date_hour == input_date_hour:
forecast.ac_power_measurement = ac_power_measurement
found = True
logger.debug(
f"AC Power measurement updated at date {input_date_hour}: {ac_power_measurement}"
)
break
return found
def process_data(self, data):
self.meta = data.get("meta", {})
all_values = data.get("values", [])
def process_data(
self,
data: Optional[dict] = None,
filepath: Optional[str] = None,
url: Optional[str] = None,
forecast_start: Union[datetime, date, str, int, float] = None,
prediction_hours: Optional[int] = None,
) -> None:
"""Processes the forecast data from the provided source (in-memory `data`, `filepath`, or `url`).
for i in range(len(all_values[0])): # Annahme, dass alle Listen gleich lang sind
sum_dc_power = sum(values[i]["dcPower"] for values in all_values)
sum_ac_power = sum(values[i]["power"] for values in all_values)
If `forecast_start` and `prediction_hours` are provided, they define the forecast period.
# Zeige die ursprünglichen und berechneten Zeitstempel an
original_datetime = all_values[0][i].get("datetime")
# print(original_datetime," ",sum_dc_power," ",all_values[0][i]['dcPower'])
dt = datetime.strptime(original_datetime, "%Y-%m-%dT%H:%M:%S.%f%z")
dt = dt.replace(tzinfo=None)
# iso_datetime = parser.parse(original_datetime).isoformat() # Konvertiere zu ISO-Format
# print()
# Optional: 2 Stunden abziehen, um die Zeitanpassung zu testen
# adjusted_datetime = parser.parse(original_datetime) - timedelta(hours=2)
# print(f"Angepasste Zeitstempel: {adjusted_datetime.isoformat()}")
Args:
data (Optional[dict]): JSON data containing forecast values. Defaults to None.
filepath (Optional[str]): Path to a file with forecast data. Defaults to None.
url (Optional[str]): API URL to retrieve forecast data from. Defaults to None.
forecast_start (Union[datetime, date, str, int, float, None]): Start datetime of the forecast
period. Defaults to None. If given before it is cached.
prediction_hours (Optional[int]): The number of hours to forecast into the future.
Defaults to None. If given before it is cached.
forecast = ForecastData(
date_time=dt, # Verwende angepassten Zeitstempel
dc_power=sum_dc_power,
ac_power=sum_ac_power,
windspeed_10m=all_values[0][i].get("windspeed_10m"),
temperature=all_values[0][i].get("temperature"),
Returns:
None
Raises:
FileNotFoundError: If the specified `filepath` does not exist.
ValueError: If no valid data source or data is provided.
Example:
forecast = PVForecast(
url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&"
"power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&"
"power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&"
"power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&"
"power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&"
"past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&"
"timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m",
prediction_hours = 24,
)
"""
# Get input forecast data
if data:
pass
elif filepath:
data = self.load_data_from_file(filepath)
elif url:
data = self.load_data_from_url_with_caching(url)
elif self.data or self.filepath or self.url:
# Re-process according to previous arguments
if self.data:
data = self.data
elif self.filepath:
data = self.load_data_from_file(self.filepath)
elif self.url:
data = self.load_data_from_url_with_caching(self.url)
else:
raise NotImplementedError(
"Re-processing for None input is not implemented!"
) # Invalid path
else:
raise ValueError("No prediction input data available.")
# Validate input data to be of a known format
data_format = validate_pv_forecast_data(data)
if data_format != "Akkudoktor":
raise ValueError(f"Prediction input data are of unknown format: '{data_format}'.")
# Assure we have a forecast start datetime
if forecast_start is None:
forecast_start = self._forecast_start
if forecast_start is None:
forecast_start = datetime(1970, 1, 1)
# Assure we have prediction hours set
if prediction_hours is None:
prediction_hours = self.prediction_hours
if prediction_hours is None:
prediction_hours = 48
self.prediction_hours = prediction_hours
if data_format == "Akkudoktor":
# --------------------------------------------
# From here Akkudoktor PV forecast data format
# ---------------------------------------------
self.meta = data.get("meta")
all_values = data.get("values")
# timezone of the PV system
self._tz_name = self.meta.get("timezone", None)
if not self._tz_name:
raise NotImplementedError(
"Processing without PV system timezone info ist not implemented!"
)
# Assumption that all lists are the same length and are ordered chronologically
# in ascending order and have the same timestamps.
values_len = len(all_values[0])
if values_len < self.prediction_hours:
# Expect one value set per prediction hour
raise ValueError(
f"The forecast must cover at least {self.prediction_hours} hours, "
f"but only {values_len} data sets are given in forecast data."
)
# Convert forecast_start to timezone of PV system and make it a naiv datetime
self._forecast_start = to_datetime(
forecast_start, to_timezone=self._tz_name, to_naiv=True
)
logger.debug(f"Forecast start set to {self._forecast_start}")
for i in range(values_len):
# Zeige die ursprünglichen und berechneten Zeitstempel an
original_datetime = all_values[0][i].get("datetime")
# print(original_datetime," ",sum_dc_power," ",all_values[0][i]['dcPower'])
dt = to_datetime(original_datetime, to_timezone=self._tz_name, to_naiv=True)
# iso_datetime = parser.parse(original_datetime).isoformat() # Konvertiere zu ISO-Format
# print()
# Optional: 2 Stunden abziehen, um die Zeitanpassung zu testen
# adjusted_datetime = parser.parse(original_datetime) - timedelta(hours=2)
# print(f"Angepasste Zeitstempel: {adjusted_datetime.isoformat()}")
if dt < self._forecast_start:
# forecast data are too old
continue
sum_dc_power = sum(values[i]["dcPower"] for values in all_values)
sum_ac_power = sum(values[i]["power"] for values in all_values)
forecast = ForecastData(
date_time=dt, # Verwende angepassten Zeitstempel
dc_power=sum_dc_power,
ac_power=sum_ac_power,
windspeed_10m=all_values[0][i].get("windspeed_10m"),
temperature=all_values[0][i].get("temperature"),
)
self.forecast_data.append(forecast)
if len(self.forecast_data) < self.prediction_hours:
raise ValueError(
f"The forecast must cover at least {self.prediction_hours} hours, "
f"but only {len(self.forecast_data)} hours starting from {forecast_start} "
f"were predicted."
)
self.forecast_data.append(forecast)
# Adapt forecast start to actual value
self._forecast_start = self.forecast_data[0].get_date_time()
logger.debug(f"Forecast start adapted to {self._forecast_start}")
def load_data_from_file(self, filepath):
def load_data_from_file(self, filepath: str) -> dict:
"""Loads forecast data from a file.
Args:
filepath (str): Path to the file containing the forecast data.
Returns:
data (dict): JSON data containing forecast values.
"""
with open(filepath, "r") as file:
data = json.load(file)
self.process_data(data)
return data
def load_data_from_url(self, url):
def load_data_from_url(self, url: str) -> dict:
"""Loads forecast data from a URL.
Example:
https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m
Args:
url (str): URL of the API providing forecast data.
Returns:
data (dict): JSON data containing forecast values.
"""
response = requests.get(url)
if response.status_code == 200:
data = response.json()
pprint(data)
self.process_data(data)
else:
print(f"Failed to load data from {url}. Status Code: {response.status_code}")
self.load_data_from_url(url)
data = f"Failed to load data from `{url}`. Status Code: {response.status_code}"
logger.error(data)
return data
def load_data_with_caching(self, url):
date = datetime.now().strftime("%Y-%m-%d")
@cache_in_file() # use binary mode by default as we have python objects not text
def load_data_from_url_with_caching(self, url: str, until_date=None) -> dict:
"""Loads data from a URL or from the cache if available.
cache_file = os.path.join(self.cache_dir, self.generate_cache_filename(url, date))
if os.path.exists(cache_file):
with open(cache_file, "r") as file:
data = json.load(file)
print("Loading data from cache.")
Args:
url (str): URL of the API providing forecast data.
Returns:
data (dict): JSON data containing forecast values.
"""
response = requests.get(url)
if response.status_code == 200:
data = response.json()
logger.debug(f"Data fetched from URL `{url} and cached.")
else:
response = requests.get(url)
if response.status_code == 200:
data = response.json()
with open(cache_file, "w") as file:
json.dump(data, file)
print("Data fetched from URL and cached.")
else:
print(f"Failed to load data from {url}. Status Code: {response.status_code}")
return
self.process_data(data)
def generate_cache_filename(self, url, date):
cache_key = hashlib.sha256(f"{url}{date}".encode("utf-8")).hexdigest()
return f"cache_{cache_key}.json"
data = f"Failed to load data from `{url}`. Status Code: {response.status_code}"
logger.error(data)
return data
def get_forecast_data(self):
"""Returns the forecast data.
Returns:
list: List of ForecastData objects.
"""
return self.forecast_data
def get_temperature_forecast_for_date(self, input_date_str):
input_date = datetime.strptime(input_date_str, "%Y-%m-%d")
def get_temperature_forecast_for_date(
self, input_date: Union[datetime, date, str, int, float, None]
):
"""Returns the temperature forecast for a specific date.
Args:
input_date (str): Date
Returns:
np.array: Array of temperature forecasts.
"""
if not self._tz_name:
raise NotImplementedError(
"Processing without PV system timezone info ist not implemented!"
)
input_date = to_datetime(input_date, to_timezone=self._tz_name, to_naiv=True).date()
daily_forecast_obj = [
data
for data in self.forecast_data
if parser.parse(data.get_date_time()).date() == input_date.date()
data for data in self.forecast_data if data.get_date_time().date() == input_date
]
daily_forecast = []
for d in daily_forecast_obj:
@@ -167,24 +534,58 @@ class PVForecast:
return np.array(daily_forecast)
def get_pv_forecast_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
def get_pv_forecast_for_date_range(
self,
start_date: Union[datetime, date, str, int, float, None],
end_date: Union[datetime, date, str, int, float, None],
):
"""Returns the PV forecast for a date range.
Args:
start_date_str (str): Start date in the format YYYY-MM-DD.
end_date_str (str): End date in the format YYYY-MM-DD.
Returns:
pd.DataFrame: DataFrame containing the forecast data.
"""
if not self._tz_name:
raise NotImplementedError(
"Processing without PV system timezone info ist not implemented!"
)
start_date = to_datetime(start_date, to_timezone=self._tz_name, to_naiv=True).date()
end_date = to_datetime(end_date, to_timezone=self._tz_name, to_naiv=True).date()
date_range_forecast = []
for data in self.forecast_data:
data_date = data.get_date_time().date() # parser.parse(data.get_date_time()).date()
data_date = data.get_date_time().date()
if start_date <= data_date <= end_date:
date_range_forecast.append(data)
print(data.get_date_time(), " ", data.get_ac_power())
# print(data.get_date_time(), " ", data.get_ac_power())
ac_power_forecast = np.array([data.get_ac_power() for data in date_range_forecast])
return np.array(ac_power_forecast)[: self.prediction_hours]
def get_temperature_for_date_range(self, start_date_str, end_date_str):
start_date = datetime.strptime(start_date_str, "%Y-%m-%d").date()
end_date = datetime.strptime(end_date_str, "%Y-%m-%d").date()
def get_temperature_for_date_range(
self,
start_date: Union[datetime, date, str, int, float, None],
end_date: Union[datetime, date, str, int, float, None],
):
"""Returns the temperature forecast for a given date range.
Args:
start_date (datetime | date | str | int | float | None): Start date.
end_date (datetime | date | str | int | float | None): End date.
Returns:
np.array: Array containing temperature forecasts for each hour within the date range.
"""
if not self._tz_name:
raise NotImplementedError(
"Processing without PV system timezone info ist not implemented!"
)
start_date = to_datetime(start_date, to_timezone=self._tz_name, to_naiv=True).date()
end_date = to_datetime(end_date, to_timezone=self._tz_name, to_naiv=True).date()
date_range_forecast = []
for data in self.forecast_data:
@@ -196,7 +597,12 @@ class PVForecast:
return np.array(temperature_forecast)[: self.prediction_hours]
def get_forecast_dataframe(self):
# Wandelt die Vorhersagedaten in ein Pandas DataFrame um
"""Converts the forecast data into a Pandas DataFrame.
Returns:
pd.DataFrame: A DataFrame containing the forecast data with columns for date/time,
DC power, AC power, windspeed, and temperature.
"""
data = [
{
"date_time": f.get_date_time(),
@@ -212,20 +618,54 @@ class PVForecast:
df = pd.DataFrame(data)
return df
def print_ac_power_and_measurement(self):
"""Druckt die DC-Leistung und den Messwert für jede Stunde."""
def get_forecast_start(self) -> datetime:
"""Return the start of the forecast data in local timezone.
Returns:
forecast_start (datetime | None): The start datetime or None if no data available.
"""
if not self._forecast_start:
return None
return to_datetime(
self._forecast_start, to_timezone=self._tz_name, to_naiv=True, to_maxtime=False
)
def report_ac_power_and_measurement(self) -> str:
"""Report DC/ AC power, and AC power measurement for each forecast hour.
For each forecast entry, the time, DC power, forecasted AC power, measured AC power
(if available), and the value returned by the `get_ac_power` method is provided.
Returns:
str: The report.
"""
rep = ""
for forecast in self.forecast_data:
date_time = forecast.date_time
print(
f"Zeit: {date_time}, DC: {forecast.dc_power}, AC: {forecast.ac_power}, Messwert: {forecast.ac_power_measurement}, AC GET: {forecast.get_ac_power()}"
rep += (
f"Zeit: {date_time}, DC: {forecast.dc_power}, AC: {forecast.ac_power}, "
f"Messwert: {forecast.ac_power_measurement}, AC GET: {forecast.get_ac_power()}"
"\n"
)
return rep
# Beispiel für die Verwendung der Klasse
# Example of how to use the PVForecast class
if __name__ == "__main__":
"""Main execution block to demonstrate the use of the PVForecast class.
Fetches PV power forecast data from a given URL, updates the AC power measurement
for the current date/time, and prints the DC and AC power information.
"""
forecast = PVForecast(
prediction_hours=24,
url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&hourly=relativehumidity_2m%2Cwindspeed_10m",
url="https://api.akkudoktor.net/forecast?lat=52.52&lon=13.405&"
"power=5000&azimuth=-10&tilt=7&powerInvertor=10000&horizont=20,27,22,20&"
"power=4800&azimuth=-90&tilt=7&powerInvertor=10000&horizont=30,30,30,50&"
"power=1400&azimuth=-40&tilt=60&powerInvertor=2000&horizont=60,30,0,30&"
"power=1600&azimuth=5&tilt=45&powerInvertor=1400&horizont=45,25,30,60&"
"past_days=5&cellCoEff=-0.36&inverterEfficiency=0.8&albedo=0.25&timezone=Europe%2FBerlin&"
"hourly=relativehumidity_2m%2Cwindspeed_10m",
)
forecast.update_ac_power_measurement(date_time=datetime.now(), ac_power_measurement=1000)
forecast.print_ac_power_and_measurement()
print(forecast.report_ac_power_and_measurement())