mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-09-20 10:41:14 +00:00
Nested config, devices registry
* All config now nested. - Use default config from model field default values. If providers should be enabled by default, non-empty default config file could be provided again. - Environment variable support with EOS_ prefix and __ between levels, e.g. EOS_SERVER__EOS_SERVER_PORT=8503 where all values are case insensitive. For more information see: https://docs.pydantic.dev/latest/concepts/pydantic_settings/#parsing-environment-variable-values - Use devices as registry for configured devices. DeviceBase as base class with for now just initializion support (in the future expand to operations during optimization). - Strip down ConfigEOS to the only configuration instance. Reload from file or reset to defaults is possible. * Fix multi-initialization of derived SingletonMixin classes.
This commit is contained in:
@@ -265,6 +265,12 @@ class SingletonMixin:
|
||||
class MySingletonModel(SingletonMixin, PydanticBaseModel):
|
||||
name: str
|
||||
|
||||
# implement __init__ to avoid re-initialization of parent class PydanticBaseModel:
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
instance1 = MySingletonModel(name="Instance 1")
|
||||
instance2 = MySingletonModel(name="Instance 2")
|
||||
|
||||
|
@@ -1110,7 +1110,7 @@ class DataProvider(SingletonMixin, DataSequence):
|
||||
|
||||
To be implemented by derived classes.
|
||||
"""
|
||||
return self.provider_id() == self.config.abstract_provider
|
||||
raise NotImplementedError()
|
||||
|
||||
@abstractmethod
|
||||
def _update_data(self, force_update: Optional[bool] = False) -> None:
|
||||
@@ -1121,6 +1121,11 @@ class DataProvider(SingletonMixin, DataSequence):
|
||||
"""
|
||||
pass
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def update_data(
|
||||
self,
|
||||
force_enable: Optional[bool] = False,
|
||||
@@ -1595,6 +1600,11 @@ class DataContainer(SingletonMixin, DataBase, MutableMapping):
|
||||
)
|
||||
return list(key_set)
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __getitem__(self, key: str) -> pd.Series:
|
||||
"""Retrieve a Pandas Series for a specified key from the data in each DataProvider.
|
||||
|
||||
|
@@ -169,6 +169,11 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def set_parameters(
|
||||
self,
|
||||
parameters: EnergieManagementSystemParameters,
|
||||
@@ -193,9 +198,9 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
self.ev = ev
|
||||
self.home_appliance = home_appliance
|
||||
self.inverter = inverter
|
||||
self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.ac_charge_hours = np.full(self.config.prediction.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction.prediction_hours, 0.0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.battery is not None:
|
||||
@@ -246,11 +251,11 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
error_msg = "Start datetime unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.prediction_hours is None:
|
||||
if self.config.prediction.prediction_hours is None:
|
||||
error_msg = "Prediction hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.optimisation_hours is None:
|
||||
if self.config.prediction.optimisation_hours is None:
|
||||
error_msg = "Optimisation hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
@@ -35,6 +35,21 @@ from pydantic import (
|
||||
from akkudoktoreos.utils.datetimeutil import to_datetime, to_duration
|
||||
|
||||
|
||||
def merge_models(source: BaseModel, update_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
def deep_update(source_dict: dict[str, Any], update_dict: dict[str, Any]) -> dict[str, Any]:
|
||||
for key, value in source_dict.items():
|
||||
if isinstance(value, dict) and isinstance(update_dict.get(key), dict):
|
||||
update_dict[key] = deep_update(update_dict[key], value)
|
||||
else:
|
||||
update_dict[key] = value
|
||||
return update_dict
|
||||
|
||||
source_dict = source.model_dump(exclude_unset=True)
|
||||
merged_dict = deep_update(source_dict, update_dict)
|
||||
|
||||
return merged_dict
|
||||
|
||||
|
||||
class PydanticTypeAdapterDateTime(TypeAdapter[pendulum.DateTime]):
|
||||
"""Custom type adapter for Pendulum DateTime fields."""
|
||||
|
||||
|
Reference in New Issue
Block a user