mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-11 11:56:17 +00:00
Nested config, devices registry
* All config now nested. - Use default config from model field default values. If providers should be enabled by default, non-empty default config file could be provided again. - Environment variable support with EOS_ prefix and __ between levels, e.g. EOS_SERVER__EOS_SERVER_PORT=8503 where all values are case insensitive. For more information see: https://docs.pydantic.dev/latest/concepts/pydantic_settings/#parsing-environment-variable-values - Use devices as registry for configured devices. DeviceBase as base class with for now just initializion support (in the future expand to operations during optimization). - Strip down ConfigEOS to the only configuration instance. Reload from file or reset to defaults is possible. * Fix multi-initialization of derived SingletonMixin classes.
This commit is contained in:
@@ -169,6 +169,11 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
dc_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
ev_charge_hours: Optional[NDArray[Shape["*"], float]] = Field(default=None, description="TBD")
|
||||
|
||||
def __init__(self, *args: Any, **kwargs: Any) -> None:
|
||||
if hasattr(self, "_initialized"):
|
||||
return
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def set_parameters(
|
||||
self,
|
||||
parameters: EnergieManagementSystemParameters,
|
||||
@@ -193,9 +198,9 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
self.ev = ev
|
||||
self.home_appliance = home_appliance
|
||||
self.inverter = inverter
|
||||
self.ac_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction_hours, 0.0)
|
||||
self.ac_charge_hours = np.full(self.config.prediction.prediction_hours, 0.0)
|
||||
self.dc_charge_hours = np.full(self.config.prediction.prediction_hours, 1.0)
|
||||
self.ev_charge_hours = np.full(self.config.prediction.prediction_hours, 0.0)
|
||||
|
||||
def set_akku_discharge_hours(self, ds: np.ndarray) -> None:
|
||||
if self.battery is not None:
|
||||
@@ -246,11 +251,11 @@ class EnergieManagementSystem(SingletonMixin, ConfigMixin, PredictionMixin, Pyda
|
||||
error_msg = "Start datetime unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.prediction_hours is None:
|
||||
if self.config.prediction.prediction_hours is None:
|
||||
error_msg = "Prediction hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
if self.config.optimisation_hours is None:
|
||||
if self.config.prediction.optimisation_hours is None:
|
||||
error_msg = "Optimisation hours unknown."
|
||||
logger.error(error_msg)
|
||||
raise ValueError(error_msg)
|
||||
|
Reference in New Issue
Block a user