mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-10-30 14:26:21 +00:00
Nested config, devices registry
* All config now nested.
- Use default config from model field default values. If providers
should be enabled by default, non-empty default config file could
be provided again.
- Environment variable support with EOS_ prefix and __ between levels,
e.g. EOS_SERVER__EOS_SERVER_PORT=8503 where all values are case
insensitive.
For more information see:
https://docs.pydantic.dev/latest/concepts/pydantic_settings/#parsing-environment-variable-values
- Use devices as registry for configured devices. DeviceBase as base
class with for now just initializion support (in the future expand
to operations during optimization).
- Strip down ConfigEOS to the only configuration instance. Reload
from file or reset to defaults is possible.
* Fix multi-initialization of derived SingletonMixin classes.
This commit is contained in:
@@ -1,22 +1,46 @@
|
||||
"""Abstract and base classes for devices."""
|
||||
|
||||
from typing import Optional
|
||||
from enum import Enum
|
||||
from typing import Optional, Type
|
||||
|
||||
from pendulum import DateTime
|
||||
from pydantic import ConfigDict, computed_field
|
||||
from pydantic import Field, computed_field
|
||||
|
||||
from akkudoktoreos.core.coreabc import (
|
||||
ConfigMixin,
|
||||
DevicesMixin,
|
||||
EnergyManagementSystemMixin,
|
||||
PredictionMixin,
|
||||
)
|
||||
from akkudoktoreos.core.logging import get_logger
|
||||
from akkudoktoreos.core.pydantic import PydanticBaseModel
|
||||
from akkudoktoreos.core.pydantic import ParametersBaseModel
|
||||
from akkudoktoreos.utils.datetimeutil import to_duration
|
||||
|
||||
logger = get_logger(__name__)
|
||||
|
||||
|
||||
# class DeviceParameters(PydanticBaseModel):
|
||||
class DeviceParameters(ParametersBaseModel):
|
||||
device_id: str = Field(description="ID of device")
|
||||
hours: Optional[int] = Field(
|
||||
default=None,
|
||||
gt=0,
|
||||
description="Number of prediction hours. Defaults to global config prediction hours.",
|
||||
)
|
||||
|
||||
|
||||
# class DeviceOptimizeResult(PydanticBaseModel):
|
||||
class DeviceOptimizeResult(ParametersBaseModel):
|
||||
device_id: str = Field(description="ID of device")
|
||||
hours: int = Field(gt=0, description="Number of hours in the simulation.")
|
||||
|
||||
|
||||
class DeviceState(Enum):
|
||||
UNINITIALIZED = 0
|
||||
PREPARED = 1
|
||||
INITIALIZED = 2
|
||||
|
||||
|
||||
class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
|
||||
"""A mixin to manage start, end datetimes for devices data.
|
||||
|
||||
@@ -35,9 +59,9 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
|
||||
Returns:
|
||||
Optional[DateTime]: The calculated end datetime, or `None` if inputs are missing.
|
||||
"""
|
||||
if self.ems.start_datetime and self.config.prediction_hours:
|
||||
if self.ems.start_datetime and self.config.prediction.prediction_hours:
|
||||
end_datetime = self.ems.start_datetime + to_duration(
|
||||
f"{self.config.prediction_hours} hours"
|
||||
f"{self.config.prediction.prediction_hours} hours"
|
||||
)
|
||||
dst_change = end_datetime.offset_hours - self.ems.start_datetime.offset_hours
|
||||
logger.debug(
|
||||
@@ -68,33 +92,92 @@ class DevicesStartEndMixin(ConfigMixin, EnergyManagementSystemMixin):
|
||||
return int(duration.total_hours())
|
||||
|
||||
|
||||
class DeviceBase(DevicesStartEndMixin, PredictionMixin):
|
||||
class DeviceBase(DevicesStartEndMixin, PredictionMixin, DevicesMixin):
|
||||
"""Base class for device simulations.
|
||||
|
||||
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
|
||||
`prediction`).
|
||||
Enables access to EOS configuration data (attribute `config`), EOS prediction data (attribute
|
||||
`prediction`) and EOS device registry (attribute `devices`).
|
||||
|
||||
Note:
|
||||
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
|
||||
Behavior:
|
||||
- Several initialization phases (setup, post_setup):
|
||||
- setup: Initialize class attributes from DeviceParameters (pydantic input validation)
|
||||
- post_setup: Set connections between devices
|
||||
- NotImplemented:
|
||||
- hooks during optimization
|
||||
|
||||
Notes:
|
||||
- This class is base to concrete devices like battery, inverter, etc. that are used in optimization.
|
||||
- Not a pydantic model for a low footprint during optimization.
|
||||
"""
|
||||
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
def __init__(self, parameters: Optional[DeviceParameters] = None):
|
||||
self.device_id: str = "<invalid>"
|
||||
self.parameters: Optional[DeviceParameters] = None
|
||||
self.hours = -1
|
||||
if self.total_hours is not None:
|
||||
self.hours = self.total_hours
|
||||
|
||||
self.initialized = DeviceState.UNINITIALIZED
|
||||
|
||||
if parameters is not None:
|
||||
self.setup(parameters)
|
||||
|
||||
def setup(self, parameters: DeviceParameters) -> None:
|
||||
if self.initialized != DeviceState.UNINITIALIZED:
|
||||
return
|
||||
|
||||
self.parameters = parameters
|
||||
self.device_id = self.parameters.device_id
|
||||
|
||||
if self.parameters.hours is not None:
|
||||
self.hours = self.parameters.hours
|
||||
if self.hours < 0:
|
||||
raise ValueError("hours is unset")
|
||||
|
||||
self._setup()
|
||||
|
||||
self.initialized = DeviceState.PREPARED
|
||||
|
||||
def post_setup(self) -> None:
|
||||
if self.initialized.value >= DeviceState.INITIALIZED.value:
|
||||
return
|
||||
|
||||
self._post_setup()
|
||||
self.initialized = DeviceState.INITIALIZED
|
||||
|
||||
def _setup(self) -> None:
|
||||
"""Implement custom setup in derived device classes."""
|
||||
pass
|
||||
|
||||
def _post_setup(self) -> None:
|
||||
"""Implement custom setup in derived device classes that is run when all devices are initialized."""
|
||||
pass
|
||||
|
||||
|
||||
class DevicesBase(DevicesStartEndMixin, PredictionMixin, PydanticBaseModel):
|
||||
class DevicesBase(DevicesStartEndMixin, PredictionMixin):
|
||||
"""Base class for handling device data.
|
||||
|
||||
Enables access to EOS configuration data (attribute `config`) and EOS prediction data (attribute
|
||||
`prediction`).
|
||||
|
||||
Note:
|
||||
Validation on assignment of the Pydantic model is disabled to speed up simulation runs.
|
||||
"""
|
||||
|
||||
# Disable validation on assignment to speed up simulation runs.
|
||||
model_config = ConfigDict(
|
||||
validate_assignment=False,
|
||||
)
|
||||
def __init__(self) -> None:
|
||||
super().__init__()
|
||||
self.devices: dict[str, "DeviceBase"] = dict()
|
||||
|
||||
def get_device_by_id(self, device_id: str) -> Optional["DeviceBase"]:
|
||||
return self.devices.get(device_id)
|
||||
|
||||
def add_device(self, device: Optional["DeviceBase"]) -> None:
|
||||
if device is None:
|
||||
return
|
||||
assert device.device_id not in self.devices, f"{device.device_id} already registered"
|
||||
self.devices[device.device_id] = device
|
||||
|
||||
def remove_device(self, device: Type["DeviceBase"] | str) -> bool:
|
||||
if isinstance(device, DeviceBase):
|
||||
device = device.device_id
|
||||
return self.devices.pop(device, None) is not None # type: ignore[arg-type]
|
||||
|
||||
def reset(self) -> None:
|
||||
self.devices = dict()
|
||||
|
||||
Reference in New Issue
Block a user