mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-06-29 01:16:52 +00:00
Update class_load.py
initial clean up, unused imports removed, translations, minor error handling for file added
This commit is contained in:
parent
9b439c9228
commit
c2af6cc1b3
@ -1,9 +1,8 @@
|
||||
import json
|
||||
from datetime import datetime, timedelta, timezone
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
from pprint import pprint
|
||||
|
||||
# Lade die .npz-Datei beim Start der Anwendung
|
||||
# Load the .npz file when the application starts
|
||||
|
||||
class LoadForecast:
|
||||
def __init__(self, filepath=None, year_energy=None):
|
||||
@ -15,96 +14,85 @@ class LoadForecast:
|
||||
|
||||
def get_daily_stats(self, date_str):
|
||||
"""
|
||||
Gibt den 24-Stunden-Verlauf mit Erwartungswert und Standardabweichung für ein gegebenes Datum zurück.
|
||||
Returns the 24-hour profile with mean and standard deviation for a given date.
|
||||
|
||||
:param data: NumPy Array mit Shape (365, 2, 24), repräsentiert Daten für ein Jahr
|
||||
:param date_str: Datum als String im Format "YYYY-MM-DD"
|
||||
:return: Ein Array mit Shape (2, 24), enthält Erwartungswerte und Standardabweichungen
|
||||
:param date_str: Date as a string in the format "YYYY-MM-DD"
|
||||
:return: An array with shape (2, 24), contains means and standard deviations
|
||||
"""
|
||||
# Umwandlung des Datums-Strings in ein datetime-Objekt
|
||||
date = datetime.strptime(date_str, "%Y-%m-%d")
|
||||
# Convert the date string into a datetime object
|
||||
date = self._convert_to_datetime(date_str)
|
||||
|
||||
# Berechnung des Tages des Jahres (1 bis 365)
|
||||
# Calculate the day of the year (1 to 365)
|
||||
day_of_year = date.timetuple().tm_yday
|
||||
|
||||
# Extraktion des 24-Stunden-Verlaufs für das gegebene Datum
|
||||
daily_stats = self.data_year_energy[day_of_year - 1] # -1, da die Indizierung bei 0 beginnt
|
||||
# Extract the 24-hour profile for the given date
|
||||
daily_stats = self.data_year_energy[day_of_year - 1] # -1 because indexing starts at 0
|
||||
return daily_stats
|
||||
|
||||
def get_hourly_stats(self, date_str, hour):
|
||||
"""
|
||||
Gibt Erwartungswert und Standardabweichung für eine spezifische Stunde eines gegebenen Datums zurück.
|
||||
Returns the mean and standard deviation for a specific hour of a given date.
|
||||
|
||||
:param data: NumPy Array mit Shape (365, 2, 24), repräsentiert Daten für ein Jahr
|
||||
:param date_str: Datum als String im Format "YYYY-MM-DD"
|
||||
:param hour: Spezifische Stunde (0 bis 23)
|
||||
:return: Ein Array mit Shape (2,), enthält Erwartungswert und Standardabweichung für die spezifizierte Stunde
|
||||
:param date_str: Date as a string in the format "YYYY-MM-DD"
|
||||
:param hour: Specific hour (0 to 23)
|
||||
:return: An array with shape (2,), contains mean and standard deviation for the specified hour
|
||||
"""
|
||||
# Umwandlung des Datums-Strings in ein datetime-Objekt
|
||||
date = datetime.strptime(date_str, "%Y-%m-%d")
|
||||
# Convert the date string into a datetime object
|
||||
date = self._convert_to_datetime(date_str)
|
||||
|
||||
# Berechnung des Tages des Jahres (1 bis 365)
|
||||
# Calculate the day of the year (1 to 365)
|
||||
day_of_year = date.timetuple().tm_yday
|
||||
|
||||
# Extraktion von Erwartungswert und Standardabweichung für die gegebene Stunde
|
||||
hourly_stats = self.data_year_energy[day_of_year - 1, :, hour] # Zugriff auf die spezifische Stunde
|
||||
# Extract mean and standard deviation for the given hour
|
||||
hourly_stats = self.data_year_energy[day_of_year - 1, :, hour] # Access the specific hour
|
||||
|
||||
return hourly_stats
|
||||
|
||||
def get_stats_for_date_range(self, start_date_str, end_date_str):
|
||||
"""
|
||||
Gibt die Erwartungswerte und Standardabweichungen für einen Zeitraum zurück.
|
||||
Returns the means and standard deviations for a date range.
|
||||
|
||||
:param start_date_str: Startdatum als String im Format "YYYY-MM-DD"
|
||||
:param end_date_str: Enddatum als String im Format "YYYY-MM-DD"
|
||||
:return: Ein Array mit den aggregierten Daten für den Zeitraum
|
||||
:param start_date_str: Start date as a string in the format "YYYY-MM-DD"
|
||||
:param end_date_str: End date as a string in the format "YYYY-MM-DD"
|
||||
:return: An array with aggregated data for the date range
|
||||
"""
|
||||
start_date = datetime.strptime(start_date_str, "%Y-%m-%d")
|
||||
end_date = datetime.strptime(end_date_str, "%Y-%m-%d")
|
||||
start_date = self._convert_to_datetime(start_date_str)
|
||||
end_date = self._convert_to_datetime(end_date_str)
|
||||
|
||||
start_day_of_year = start_date.timetuple().tm_yday
|
||||
end_day_of_year = end_date.timetuple().tm_yday
|
||||
|
||||
# Beachten, dass bei Schaltjahren der Tag des Jahres angepasst werden muss
|
||||
stats_for_range = self.data_year_energy[start_day_of_year:end_day_of_year] # -1 da die Indizierung bei 0 beginnt
|
||||
# print(start_day_of_year,"-",end_day_of_year)
|
||||
# print(stats_for_range.shape)
|
||||
stats_for_range =stats_for_range.swapaxes(1, 0)
|
||||
# Note that in leap years, the day of the year may need adjustment
|
||||
stats_for_range = self.data_year_energy[start_day_of_year:end_day_of_year] # -1 because indexing starts at 0
|
||||
stats_for_range = stats_for_range.swapaxes(1, 0)
|
||||
|
||||
stats_for_range = stats_for_range.reshape(stats_for_range.shape[0],-1)
|
||||
# print(stats_for_range.shape)
|
||||
# print(stats_for_range)
|
||||
# print()
|
||||
# print(stats_for_range)
|
||||
# print(start_day_of_year, " ",end_day_of_year)
|
||||
# Hier kannst du entscheiden, wie du die Daten über den Zeitraum aggregieren möchtest
|
||||
# Zum Beispiel könntest du Mittelwerte, Summen oder andere Statistiken über diesen Zeitraum berechnen
|
||||
stats_for_range = stats_for_range.reshape(stats_for_range.shape[0], -1)
|
||||
return stats_for_range
|
||||
|
||||
|
||||
|
||||
def load_data(self):
|
||||
with open(self.filepath, 'r') as file:
|
||||
"""Loads data from the specified file."""
|
||||
try:
|
||||
data = np.load(self.filepath)
|
||||
self.data = np.array(list(zip(data["yearly_profiles"],data["yearly_profiles_std"])))
|
||||
self.data = np.array(list(zip(data["yearly_profiles"], data["yearly_profiles_std"])))
|
||||
self.data_year_energy = self.data * self.year_energy
|
||||
#pprint(self.data_year_energy)
|
||||
# pprint(self.data_year_energy)
|
||||
except FileNotFoundError:
|
||||
print(f"Error: File {self.filepath} not found.")
|
||||
except Exception as e:
|
||||
print(f"An error occurred while loading data: {e}")
|
||||
|
||||
def get_price_data(self):
|
||||
# load_profiles_exp_l = load_profiles_exp*year_energy
|
||||
# load_profiles_std_l = load_profiles_std*year_energy
|
||||
|
||||
"""Returns price data (currently not implemented)."""
|
||||
return self.price_data
|
||||
|
||||
# Beispiel für die Verwendung der Klasse
|
||||
def _convert_to_datetime(self, date_str):
|
||||
"""Converts a date string to a datetime object."""
|
||||
return datetime.strptime(date_str, "%Y-%m-%d")
|
||||
|
||||
# Example usage of the class
|
||||
if __name__ == '__main__':
|
||||
filepath = r'..\load_profiles.npz' # Pfad zur JSON-Datei anpassen
|
||||
filepath = r'..\load_profiles.npz' # Adjust the path to the .npz file
|
||||
lf = LoadForecast(filepath=filepath, year_energy=2000)
|
||||
#load_forecast = lf.get_price_data
|
||||
#
|
||||
#price_forecast = HourlyElectricityPriceForecast(filepath)
|
||||
specific_date_prices = lf.get_daily_stats('2024-02-16') # Datum anpassen
|
||||
specific_date_prices = lf.get_hourly_stats('2024-02-16', 12) # Datum anpassen
|
||||
print(specific_date_prices)
|
||||
#for price in price_forecast.get_price_data():
|
||||
# print(price.get_starts_at(), price.get_total(), price.get_currency())
|
||||
specific_date_prices = lf.get_daily_stats('2024-02-16') # Adjust date as needed
|
||||
specific_hour_stats = lf.get_hourly_stats('2024-02-16', 12) # Adjust date and hour as needed
|
||||
print(specific_hour_stats)
|
||||
|
Loading…
x
Reference in New Issue
Block a user