mirror of
https://github.com/Akkudoktor-EOS/EOS.git
synced 2025-12-13 15:26:17 +00:00
Wallbox Leistung wird von der Lastprognose abgezogen
This commit is contained in:
235
modules/class_load_corrector.py
Normal file
235
modules/class_load_corrector.py
Normal file
@@ -0,0 +1,235 @@
|
||||
import json,sys, os
|
||||
from datetime import datetime, timedelta, timezone
|
||||
import numpy as np
|
||||
from pprint import pprint
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
# from sklearn.model_selection import train_test_split, GridSearchCV
|
||||
# from sklearn.ensemble import GradientBoostingRegressor
|
||||
# from xgboost import XGBRegressor
|
||||
# from statsmodels.tsa.statespace.sarimax import SARIMAX
|
||||
# from tensorflow.keras.models import Sequential
|
||||
# from tensorflow.keras.layers import Dense, LSTM
|
||||
# from tensorflow.keras.optimizers import Adam
|
||||
# from sklearn.preprocessing import MinMaxScaler
|
||||
# from sklearn.metrics import mean_squared_error, r2_score
|
||||
import mariadb
|
||||
# from sqlalchemy import create_engine
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.metrics import mean_squared_error, r2_score
|
||||
# Fügen Sie den übergeordneten Pfad zum sys.path hinzu
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from config import *
|
||||
from modules.class_load import *
|
||||
|
||||
class LoadPredictionAdjuster:
|
||||
def __init__(self, measured_data, predicted_data, load_forecast):
|
||||
self.measured_data = measured_data
|
||||
self.predicted_data = predicted_data
|
||||
self.load_forecast = load_forecast
|
||||
self.merged_data = self._merge_data()
|
||||
self.train_data = None
|
||||
self.test_data = None
|
||||
self.weekday_diff = None
|
||||
self.weekend_diff = None
|
||||
|
||||
|
||||
def _remove_outliers(self, data, threshold=2):
|
||||
# Berechne den Z-Score der 'Last'-Daten
|
||||
data['Z-Score'] = np.abs((data['Last'] - data['Last'].mean()) / data['Last'].std())
|
||||
# Filtere die Daten nach dem Schwellenwert
|
||||
filtered_data = data[data['Z-Score'] < threshold]
|
||||
return filtered_data.drop(columns=['Z-Score'])
|
||||
|
||||
|
||||
def _merge_data(self):
|
||||
merged_data = pd.merge(self.measured_data, self.predicted_data, on='time', how='inner')
|
||||
merged_data['Hour'] = merged_data['time'].dt.hour
|
||||
merged_data['DayOfWeek'] = merged_data['time'].dt.dayofweek
|
||||
return merged_data
|
||||
|
||||
def calculate_weighted_mean(self, train_period_weeks=9, test_period_weeks=1):
|
||||
self.merged_data = self._remove_outliers(self.merged_data)
|
||||
train_end_date = self.merged_data['time'].max() - pd.Timedelta(weeks=test_period_weeks)
|
||||
train_start_date = train_end_date - pd.Timedelta(weeks=train_period_weeks)
|
||||
|
||||
test_start_date = train_end_date + pd.Timedelta(hours=1)
|
||||
test_end_date = test_start_date + pd.Timedelta(weeks=test_period_weeks) - pd.Timedelta(hours=1)
|
||||
|
||||
self.train_data = self.merged_data[(self.merged_data['time'] >= train_start_date) & (self.merged_data['time'] <= train_end_date)]
|
||||
self.test_data = self.merged_data[(self.merged_data['time'] >= test_start_date) & (self.merged_data['time'] <= test_end_date)]
|
||||
|
||||
self.train_data['Difference'] = self.train_data['Last'] - self.train_data['Last Pred']
|
||||
|
||||
weekdays_train_data = self.train_data[self.train_data['DayOfWeek'] < 5]
|
||||
weekends_train_data = self.train_data[self.train_data['DayOfWeek'] >= 5]
|
||||
|
||||
self.weekday_diff = weekdays_train_data.groupby('Hour').apply(self._weighted_mean_diff).dropna()
|
||||
self.weekend_diff = weekends_train_data.groupby('Hour').apply(self._weighted_mean_diff).dropna()
|
||||
|
||||
def _weighted_mean_diff(self, data):
|
||||
train_end_date = self.train_data['time'].max()
|
||||
weights = 1 / (train_end_date - data['time']).dt.days.replace(0, np.nan)
|
||||
weighted_mean = (data['Difference'] * weights).sum() / weights.sum()
|
||||
return weighted_mean
|
||||
|
||||
def adjust_predictions(self):
|
||||
self.train_data['Adjusted Pred'] = self.train_data.apply(self._adjust_row, axis=1)
|
||||
self.test_data['Adjusted Pred'] = self.test_data.apply(self._adjust_row, axis=1)
|
||||
|
||||
def _adjust_row(self, row):
|
||||
if row['DayOfWeek'] < 5:
|
||||
return row['Last Pred'] + self.weekday_diff.get(row['Hour'], 0)
|
||||
else:
|
||||
return row['Last Pred'] + self.weekend_diff.get(row['Hour'], 0)
|
||||
|
||||
def plot_results(self):
|
||||
self._plot_data(self.train_data, 'Training')
|
||||
self._plot_data(self.test_data, 'Testing')
|
||||
|
||||
def _plot_data(self, data, data_type):
|
||||
plt.figure(figsize=(14, 7))
|
||||
plt.plot(data['time'], data['Last'], label=f'Actual Last - {data_type}', color='blue')
|
||||
plt.plot(data['time'], data['Last Pred'], label=f'Predicted Last - {data_type}', color='red', linestyle='--')
|
||||
plt.plot(data['time'], data['Adjusted Pred'], label=f'Adjusted Predicted Last - {data_type}', color='green', linestyle=':')
|
||||
plt.xlabel('Time')
|
||||
plt.ylabel('Load')
|
||||
plt.title(f'Actual vs Predicted vs Adjusted Predicted Load ({data_type} Data)')
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
def evaluate_model(self):
|
||||
mse = mean_squared_error(self.test_data['Last'], self.test_data['Adjusted Pred'])
|
||||
r2 = r2_score(self.test_data['Last'], self.test_data['Adjusted Pred'])
|
||||
print(f'Mean Squared Error: {mse}')
|
||||
print(f'R-squared: {r2}')
|
||||
|
||||
def predict_next_hours(self, hours_ahead):
|
||||
last_date = self.merged_data['time'].max()
|
||||
future_dates = [last_date + pd.Timedelta(hours=i) for i in range(1, hours_ahead + 1)]
|
||||
future_df = pd.DataFrame({'time': future_dates})
|
||||
future_df['Hour'] = future_df['time'].dt.hour
|
||||
future_df['DayOfWeek'] = future_df['time'].dt.dayofweek
|
||||
future_df['Last Pred'] = future_df['time'].apply(self._forecast_next_hours)
|
||||
future_df['Adjusted Pred'] = future_df.apply(self._adjust_row, axis=1)
|
||||
return future_df
|
||||
|
||||
def _forecast_next_hours(self, timestamp):
|
||||
date_str = timestamp.strftime('%Y-%m-%d')
|
||||
hour = timestamp.hour
|
||||
daily_forecast = self.load_forecast.get_daily_stats(date_str)
|
||||
return daily_forecast[0][hour] if hour < len(daily_forecast[0]) else np.nan
|
||||
|
||||
|
||||
|
||||
class LastEstimator:
|
||||
def __init__(self):
|
||||
self.conn_params = db_config
|
||||
self.conn = mariadb.connect(**self.conn_params)
|
||||
|
||||
def fetch_data(self, start_date, end_date):
|
||||
queries = {
|
||||
"Stromzaehler": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Stromzaehler FROM sensor_stromzaehler WHERE topic = 'stromzaehler leistung' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
|
||||
"PV": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS PV FROM data WHERE topic = 'solarallpower' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
|
||||
"Batterie_Strom_PIP": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Batterie_Strom_PIP FROM pip WHERE topic = 'battery_current' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
|
||||
"Batterie_Volt_PIP": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Batterie_Volt_PIP FROM pip WHERE topic = 'battery_voltage' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
|
||||
"Stromzaehler_Raus": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Stromzaehler_Raus FROM sensor_stromzaehler WHERE topic = 'stromzaehler leistung raus' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
|
||||
"Wallbox": f"SELECT DATE_FORMAT(timestamp, '%Y-%m-%d %H:00:00') as timestamp, AVG(data) AS Wallbox_Leistung FROM wallbox WHERE topic = 'power_total' AND timestamp BETWEEN '{start_date}' AND '{end_date}' GROUP BY 1 ORDER BY timestamp ASC",
|
||||
|
||||
}
|
||||
|
||||
|
||||
dataframes = {}
|
||||
for key, query in queries.items():
|
||||
dataframes[key] = pd.read_sql(query, self.conn)
|
||||
|
||||
return dataframes
|
||||
|
||||
def calculate_last(self, dataframes):
|
||||
# Batterie_Leistung = Batterie_Strom_PIP * Batterie_Volt_PIP
|
||||
dataframes["Batterie_Leistung"] = dataframes["Batterie_Strom_PIP"].merge(dataframes["Batterie_Volt_PIP"], on="timestamp", how="outer")
|
||||
dataframes["Batterie_Leistung"]["Batterie_Leistung"] = dataframes["Batterie_Leistung"]["Batterie_Strom_PIP"] * dataframes["Batterie_Leistung"]["Batterie_Volt_PIP"]
|
||||
|
||||
# Stromzaehler_Saldo = Stromzaehler - Stromzaehler_Raus
|
||||
dataframes["Stromzaehler_Saldo"] = dataframes["Stromzaehler"].merge(dataframes["Stromzaehler_Raus"], on="timestamp", how="outer")
|
||||
dataframes["Stromzaehler_Saldo"]["Stromzaehler_Saldo"] = dataframes["Stromzaehler_Saldo"]["Stromzaehler"] - dataframes["Stromzaehler_Saldo"]["Stromzaehler_Raus"]
|
||||
|
||||
# Stromzaehler_Saldo - Batterie_Leistung
|
||||
dataframes["Netzleistung"] = dataframes["Stromzaehler_Saldo"].merge(dataframes["Batterie_Leistung"], on="timestamp", how="outer")
|
||||
dataframes["Netzleistung"]["Netzleistung"] = dataframes["Netzleistung"]["Stromzaehler_Saldo"] - dataframes["Netzleistung"]["Batterie_Leistung"]
|
||||
|
||||
# Füge die Wallbox-Leistung hinzu
|
||||
dataframes["Netzleistung"] = dataframes["Netzleistung"].merge(dataframes["Wallbox"], on="timestamp", how="left")
|
||||
dataframes["Netzleistung"]["Wallbox_Leistung"] = dataframes["Netzleistung"]["Wallbox_Leistung"].fillna(0) # Fülle fehlende Werte mit 0
|
||||
|
||||
# Last = Netzleistung + PV
|
||||
# Berechne die endgültige Last
|
||||
dataframes["Last"] = dataframes["Netzleistung"].merge(dataframes["PV"], on="timestamp", how="outer")
|
||||
dataframes["Last"]["Last_ohneWallbox"] = dataframes["Last"]["Netzleistung"] + dataframes["Last"]["PV"]
|
||||
dataframes["Last"]["Last"] = dataframes["Last"]["Netzleistung"] + dataframes["Last"]["PV"] - dataframes["Last"]["Wallbox_Leistung"]
|
||||
return dataframes["Last"].dropna()
|
||||
|
||||
def get_last(self, start_date, end_date):
|
||||
dataframes = self.fetch_data(start_date, end_date)
|
||||
last_df = self.calculate_last(dataframes)
|
||||
return last_df
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
|
||||
estimator = LastEstimator()
|
||||
start_date = "2024-06-01"
|
||||
end_date = "2024-08-01"
|
||||
last_df = estimator.get_last(start_date, end_date)
|
||||
|
||||
selected_columns = last_df[['timestamp', 'Last']]
|
||||
selected_columns['time'] = pd.to_datetime(selected_columns['timestamp']).dt.floor('H')
|
||||
selected_columns['Last'] = pd.to_numeric(selected_columns['Last'], errors='coerce')
|
||||
|
||||
# Drop rows with NaN values
|
||||
cleaned_data = selected_columns.dropna()
|
||||
|
||||
print(cleaned_data)
|
||||
# Create an instance of LoadForecast
|
||||
|
||||
lf = LoadForecast(filepath=r'.\load_profiles.npz', year_energy=6000*1000)
|
||||
|
||||
# Initialize an empty DataFrame to hold the forecast data
|
||||
forecast_list = []
|
||||
|
||||
# Loop through each day in the date range
|
||||
for single_date in pd.date_range(cleaned_data['time'].min().date(), cleaned_data['time'].max().date()):
|
||||
date_str = single_date.strftime('%Y-%m-%d')
|
||||
daily_forecast = lf.get_daily_stats(date_str)
|
||||
mean_values = daily_forecast[0] # Extract the mean values
|
||||
hours = [single_date + pd.Timedelta(hours=i) for i in range(24)]
|
||||
daily_forecast_df = pd.DataFrame({'time': hours, 'Last Pred': mean_values})
|
||||
forecast_list.append(daily_forecast_df)
|
||||
|
||||
# Concatenate all daily forecasts into a single DataFrame
|
||||
forecast_df = pd.concat(forecast_list, ignore_index=True)
|
||||
|
||||
# Create an instance of the LoadPredictionAdjuster class
|
||||
adjuster = LoadPredictionAdjuster(cleaned_data, forecast_df, lf)
|
||||
|
||||
# Calculate the weighted mean differences
|
||||
adjuster.calculate_weighted_mean()
|
||||
|
||||
# Adjust the predictions
|
||||
adjuster.adjust_predictions()
|
||||
|
||||
# Plot the results
|
||||
adjuster.plot_results()
|
||||
|
||||
# Evaluate the model
|
||||
adjuster.evaluate_model()
|
||||
|
||||
# Predict the next x hours
|
||||
future_predictions = adjuster.predict_next_hours(48)
|
||||
print(future_predictions)
|
||||
Reference in New Issue
Block a user